YEAR 1 (2016) MONITORING REPORT AYCOCK SPRINGS STREAM AND WETLAND MITIGATION SITE ALAMANCE COUNTY, NORTH CAROLINA DMS PROJECT NO. 96312 FULL DELIVERY CONTRACT NO. 5791

CAPE FEAR RIVER BASIN CATALOGING UNIT 03030002

Data Collection – May-October 2016

PREPARED FOR:

N.C. DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF MITIGATION SERVICES 1601 MAIL SERVICE CENTER RALEIGH, NORTH CAROLINA 27699-1601

December 2016

YEAR 1 (2016) MONITORING REPORT AYCOCK SPRINGS STREAM AND WETLAND MITIGATION SITE ALAMANCE COUNTY, NORTH CAROLINA DMS PROJECT NO. 96312 FULL DELIVERY CONTRACT NO. 5791

CAPE FEAR RIVER BASIN CATALOGING UNIT 03030002

Data Collection – May-October 2016

PREPARED BY:

RESTORATION SYSTEMS, LLC 1101 HAYNES STREET, SUITE 211 RALEIGH, NORTH CAROLINA 27604

AND

AXIOM ENVIRONMENTAL, INC. 218 SNOW AVENUE RALEIGH, NORTH CAROLINA 27603

December 2016

Table of Contents

1.0 PROJECT SUMMARY	1
2.0 METHODOLOGY	
2.1 Streams	
2.2 Vegetation	7
2.3 Wetland Hydrology	
3.0 REMEDIAL ACTION PLAN	
3.1 Stream	
3.2 Vegetation	
4.0 REFERENCES	9
Appendices	
APPENDIX A. PROJECT BACKGROUND DATA AND MAPS	
Figure 1. Site LoCation	
Table 1. Project Components and Mitigation Credits	
Table 2. Project Activity and Reporting History	
Table 3. Project Contacts Table	
Table 4. Project Baseline Information and Attributes	
APPENDIX B. VISUAL ASSESSMENT DATA	
Figure 2. Current Conditions Plan View	
Tables 5A-5E. Visual Stream Morphology Stability Assessment	
Table 6. Vegetation Condition Assessment	
Vegetation Monitoring Photographs	
APPENDIX C. VEGETATION PLOT DATA	
Table 7. Vegetation Plot Criteria Attainment	
Table 8. CVS Vegetation Plot Metadata	
Table 9. Total and Planted Stems by Plot and Species	
Figure 3. Remedial Action Plan	
APPENDIX D. STREAM SURVEY DATA	
Cross-section Plots	
Substrate Plots	
Table 10a-10e. Baseline Stream Data Summary	
Table 11a-11l. Monitoring Data	
APPENDIX E. HYDROLOGY DATA	
Table 12. UT3 Channel Evidence	
Stream Gauge Graph	
Table 13. Verification of Bankfull Events	
Groundwater Gauge Graphs	
Table 14. Groundwater Hydrology Data	

1.0 PROJECT SUMMARY

The Aycock Springs Stream and Wetland Mitigation Site (Site) encompasses approximately 13 acres located roughly 1.5 miles north of Elon and Gibsonville in western Alamance County within 14-digit Cataloging Unit and Targeted Local Watershed 03030002030010 of the Cape Fear River Basin (Figure 1, Appendix B and Table 4, Appendix A). Prior to construction, the Site consisted of agricultural land used for livestock grazing, hay production, and timber harvest. Streams were cleared, trampled by livestock, eroded vertically and laterally, and received extensive sediment and nutrient inputs from livestock and timber harvest activities. Stream impacts in Travis Creek also occurred due to a breached dam that impounded water during storm events. In addition, streamside wetlands were drained by channel incision, soil compaction, the loss of forest vegetation, and land uses. Completed project activities, reporting history, completion dates, project contacts, and project attributes are summarized in Tables 1-4 (Appendix A).

Positive aspects supporting mitigation activities at the Site include the following.

- Streams have a Best Usage Classification of WS-V, NSW
- Located in a Targeted Local Watershed and within the NCDMS Travis, Tickle, Little Alamance Local Watershed Planning (LWP) Area
- Travis Creek is listed on the NCDENR 2012 303(d) list for ecological/biological integrity
- Immediately south and abutting the Site is a property identified in the *Little Alamance, Travis, & Tickle Creek Watersheds Restoration Plan* (PTCOG 2008) as a target property for wetland restoration and streambank enhancement/conservation
- Immediately west of the Site is a large tract associated with Guilford County open space

Based on the Cape Fear River Basin Restoration Priorities Report 2009 (NCEEP 2009) and the Little Alamance, Travis, & Tickle Creek Watersheds Restoration Plan (PTCOG 2008), Targeted Local Watershed 03030002030010 is not meeting its designated use of supporting aquatic life. Agricultural land use appears to be the main source of stress in the Hydrologic Unit, as well as land clearing and poor riparian management. This project will meet the eight priority goals of the Travis, Tickle, Little Alamance Local Watershed Plan (LWP) including the following.

- 1) Reduce sediment loading
- 2) Reduce nutrient loading
- 3) Manage stormwater runoff
- 4) Reduce toxic inputs
- 5) Provide and improve instream habitat
- 6) Provide and improve terrestrial habitat
- 7) Improve stream stability
- 8) Improve hydrologic function

The following six goals were identified by the Stakeholder group of the Travis, Tickle, Little Alamance LWP Phase I assessment which address the water quality impacts and watershed needs in all of the Little Alamance, Travis, Tickle watersheds in 2006.

- 1) Increase local government awareness of the impacts of urban growth on water resources
- 2) Strengthen watershed protection standards
- 3) Improve water quality through stormwater management
- 4) Identify and rank parcels for retrofits, stream repair, preservation, and/or conservation
- 5) Assess aguatic health to identify stressors that are the most likely causes of poor biological conditions

6) Meet requirements of outside funding sources for implementation of projects

The following table summarizes the project goals/objectives and proposed functional uplift based on restoration activities and observations of two reference areas located in the vicinity of the Site. Goals and objectives target functional uplift identified in the Travis, Tickle, Little Alamance LWP and based on stream/wetland functional assessments developed by the regulatory agencies.

Project Goals and Objectives

Project Goal/Objective How Goal/Objective will be Accomplished				
	Improve Hydrology			
Restore Floodplain Access	Building a new channel at the historic floodplain elevation to restore overbank flows			
Restore Wooded Riparian Buffer	Planting a woody riparian buffer			
Restore Stream Stability				
Improve Sediment Transport to Convert the UTs from Sand/Silt Dominated to Gravel/Cobble Dominated Streams	Providing proper channel width and depth, stabilizing channel banks, providing gravel/cobble substrate, planting a woody riparian buffer, and removing cattle			
Improve Stream Geomorphology				
Increase Surface Storage and Retention	Building a new channel at the historic floodplain elevation restoring			
Restore Appropriate Inundation/Duration	overbank flows, removing cattle, scarifying compacted soils, and planting woody vegetation			
Increase Subsurface Storage and Retention	Raising the stream bed elevation and rip compacted soils			
Improve Water Quality				
Increase Upland Pollutant Filtration	Planting a native, woody riparian buffer			
Increase Thermoregulation	Planting a native, woody riparian buffer			
Reduce Stressors and Sources of Pollution	Removing cattle and other agricultural inputs			
Increase Removal and Retention of Pathogens, Particulates (Sediments), Dissolved Materials (Nutrients), and Toxins from the Water Column	Raising the stream bed elevation, restoring overbank flows, planting with woody vegetation, removing cattle, increasing surface storage and retention, and restoring appropriate inundation/duration			
Increase Energy Dissipation of	Raising the stream bed elevation, restoring overbank flows, and planting			
Overbank/Overland Flows/Stormwater Runoff	with woody vegetation			
Restore Habitat				
Restore In-stream Habitat	Building a stable channel with a cobble/gravel bed and planting a woody riparian buffer			
Restore Stream-side Habitat Improve Vegetation Composition and Structure	Planting a woody riparian buffer			

Project construction was completed April 6, 2016 and planting was completed April 8, 2016. Site activities included the restoration of perennial and intermittent stream channels, enhancement (Level II) of perennial stream channel, and re-establishment of riparian wetlands. Priority I restoration of intermittent channels at the Site is imperative to provide significant functional uplift to Site hydrology, water quality, and habitat, in addition to restore adjacent streamside, riparian wetlands. A total of **3581.1 Stream Mitigation Units** (SMUs) and **0.5 Riparian Wetland Mitigation Units** (WMUs) are being provided as depicted in the following table.

Stream Mitigation Type	Perennial Stream (linear feet)	Intermittent Stream (linear feet)	Ratio	Stream Mitigation Units
Restoration	3147	90	1:1	3237
Restoration (See Notes below)**		122	1:5:1	81.3
Enhancement (Level II)	657		2.5:1	262.8
TOTAL	3804	212		3581.1
Wetland Mitigation Type	Acreage	Ratio		n Wetland tion Units
Riparian Re-establishment	0.5	1:1	0.5	
Riparian Enhancement	1.5*			
TOTAL	2.0		0.5	

^{*} Wetland enhancement acreage is not included in mitigation credit calculations as per RFP 16-005568 requirements.

In addition, the landowner received a violation for riparian buffer impacts due to clearing of trees adjacent to streams draining to Jordan Lake (NOV-2013-BV-0001). As a result of this violation, the upper 122 linear feet of UT 3 has a reduced credit ratio (1.5:1). On-site visits conducted with USACE representatives determined that the functional uplift of project restoration to UT 3 would be satisfactory to generate credit at this ratio.

Stream Success Criteria

Monitoring and success criteria for stream restoration should relate to project goals and objectives. From a mitigation perspective, several of the goals and objectives are assumed to be functionally elevated by restoration activities without direct measurement. Other goals and objectives will be considered successful upon achieving vegetation success criteria. The following summarizes stream success criteria related to goals and objectives.

^{**} Prior to Site selection, the landowner received a violation for unauthorized discharge of fill material into Waters of the United States. Fill resulted from unpermitted upgrades to a farm pond dam, including widening the dam footprint, dredging stream channel, and casting spoil material adjacent to the stream channel on jurisdictional wetlands. Prior to restoration activities the landowner was required to obtain an after-the-fact permit to resolve the violations of Section 301 of the Clean Water Act (Action ID:SAW-2014-00665). In addition, stream reaches and wetland areas associated with the violation have been removed from credit generation.

Project Goal/Objective	Stream Success Criteria
Impi	ove Hydrology
Restore Floodplain Access	Two overbank events in separate monitoring years will be
Restore Floodplani Access	documented during the monitoring period.
Restore Wooded Riparian Buffer	Attaining Vegetation Success Criteria.
	Cross-sections, monitored annually, will be compared to as-
Restore Stream Stability	built measurements to determine channel stability and
	maintenance of channel geomorphology.
Improve Stream Geomorphology	Convert stream channels from unstable G- and F-type
1 0,	channels to stable E- and C- type stream channels.
Increase Surface Storage and Retention	Two overbank events in separate monitoring years, and
Restore Appropriate Inundation/Duration	attaining Wetland and Vegetation Success Criteria.
	Two overbank events will be documented, in separate years,
	during the monitoring period and documentation of an elevated
Increase Subsurface Storage and Retention	groundwater table (within 12 inches of the soil surface) for
	greater than 10 percent of the growing season during average
I O I' I' O III III	climatic conditions.
Improve Sediment Transport to Convert the UTs	Pebble counts documenting coarsening of bed material from
from Sand/Silt Dominated to Gravel/Cobble Dominated Streams	pre-existing conditions of sand and silt to post restoration
	conditions of gravel and cobble.
Impro	we Water Quality Attaining Wetland and Vegetation Success Criteria (Sections
Increase Upland Pollutant Filtration	2.3 and 2.2)
Increase Thermoregulation	Attaining Vegetation Success Criteria (Section 2.2).
Reduce Stressors and Sources of Pollution	Fencing maintained throughout the monitoring period and
Reduce Stressors and Sources of Pollution	encroachment within the easement eliminated.
Increase Removal and Retention of Pathogens,	Removal of cattle, documentation of two overbank events in
Particulates (Sediments), Dissolved Materials	separate monitoring years, and attaining Vegetation Success
(Nutrients), and Toxins from the Water Column	Criteria (Section 2.2)
Increase Energy Dissipation of Overbank/Overland	Documentation of two overbank events in separate monitoring
Flows/Stormwater Runoff	years and attaining Vegetation Success Criteria (Section 2.2)
Re	store Habitat
	Pebble counts documenting coarsening of bed material from
Restore In-stream Habitat	pre-existing conditions of sand and silt to post restoration
	conditions of gravel and cobble, and attaining Vegetation
	Success Criteria (Section 2.2)
Restore Stream-side Habitat	Attaining Vegetation Success Criteria (Section 2.2)
Improve Vegetation Composition and Structure	Attaining Vegetation Success Criteria (Section 2.2)

Vegetation Success Criteria

An average density of 320 planted stems per acre must be surviving in the first three monitoring years. Subsequently, 290 planted stems per acre must be surviving in year 4, 260 planted stems per acre in year 5, and 210 planted stems per acre in year 7. In addition, planted vegetation must average 10 feet in height in each plot at year 7 since this Site is located in the Piedmont. Volunteer stems may be considered on a case-by-case basis in determining overall vegetation success; however, volunteer stems should be counted separately from planted stems.

Wetland Success Criteria

Monitoring and success criteria for wetland re-establishment should relate to project goals and objectives. From a mitigation perspective, several of the goals and objectives are assumed to be functionally elevated by restoration activities without direct measurement. Other goals and objectives will be considered successful upon achieving vegetation success criteria. The following summarizes wetland success criteria related to goals and objectives.

Wetland Goals and Success Criteria

Project Goal/Objective Wetland Success Criteria			
Improve Hydrology			
Restore Wooded Riparian Buffer	Attaining Vegetation Success Criteria.		
Increase Surface Storage and Retention	Two overbank events in separate monitoring years, and attaining		
Restore Appropriate Inundation/Duration	Wetland and Vegetation Success Criteria.		
Increase Subsurface Storage and Retention	wettand and vegetation success enteria.		
Improv	e Water Quality		
Increase Upland Pollutant Filtration	Attaining Wetland and Vegetation Success Criteria.		
Reduce Stressors and Sources of Pollution	Fencing maintained throughout the monitoring period and		
Reduce Stressors and Sources of Fondtion	encroachment within the easement eliminated.		
Increase Removal and Retention of Pathogens,	Removal of cattle, documentation of two overbank events in		
Particulates (Sediments), Dissolved Materials	separate monitoring years, and attaining Vegetation Success		
(Nutrients), and Toxins from the Water Column	Criteria.		
Increase Energy Dissipation of Overbank/Overland	Documentation of two overbank events in separate monitoring		
Flows/Stormwater Runoff	years, and attaining Vegetation Success Criteria.		
Restore Habitat			
Restore Stream-side Habitat	Attaining Vagatation Sugages Critaria		
Improve Vegetation Composition and Structure	Attaining Vegetation Success Criteria.		

According to the *Soil Survey of Alamance County*, the growing season for Alamance County is from April 17 – October 22 (USDA 1960). However, the start date for the growing season is not typical for the Piedmont region; therefore, for purposes of this project gauge hydrologic success will be determined using data from February 1 - October 22 to more accurately represent the period of biological activity. This will be confirmed annually by soil temperatures and/or bud burst. The growing season will be initiated each year on the documented date of biological activity. Photographic evidence of bud burst and field logs of date and temperature will be included in the annual monitoring reports.

Target hydrological characteristics include saturation or inundation for 10 percent of the monitored period (February 1-October 22), during average climatic conditions. During years with atypical climatic conditions, groundwater gauges in reference wetlands may dictate threshold hydrology success criteria (75 percent of reference). These areas are expected to support hydrophytic vegetation. If wetland parameters are marginal as indicated by vegetation and/or hydrology monitoring, a jurisdictional determination will be performed.

Summary of Monitoring Period/Hydrology Success Criteria by Year

Year	Soil Temperatures/Date Bud	Monitoring Period Used for	10 Percent of
rear	Burst Documented	Determining Success	Monitoring Period
2016 (Year 1)		April 17*-October 22 (198 days)	19 days
2017 (Year 2)			
2018 (Year 3)			
2019 (Year 4)			
2020 (Year 5)			

^{*}Gauges were installed on May 5 during year 1 (2016), so April 17 was used as the start of the growing season (NRCS).

Summary information/data related to the occurrence of items such as beaver or encroachment and statistics related to performance of various project and monitoring elements can be found in tables and figures within this report's appendices. Narrative background and supporting information formerly found in these reports can be found in the Baseline Monitoring Report (formerly Mitigation Plan) and in the Mitigation Plan (formerly the Restoration Plan) documents available on the NC Division of Mitigation Services (NCDMS)

website. All raw data supporting the tables and figures in the appendices are available from NCDMS upon request.

2.0 METHODOLOGY

Monitoring requirements and success criteria outlined in the latest guidance by US Army Corps of Engineers (USACE) in April 2003 (*Stream Mitigation Guidelines*) will be followed and are briefly outlined below. Monitoring data collected at the Site should include reference photos, plant survival analysis, channel stability analysis, and biological data, if specifically required by permit conditions.

Wetland hydrology is proposed to be monitored for a period of seven years (years 1-7). Riparian vegetation and stream morphology is proposed to be monitored for a period of seven years with measurements completed in years 1-3, year 5, and year 7. Monitoring reports for years 4 and 6 will include photo documentation of stream stability and wetland hydrology monitoring data. If monitoring demonstrates the Site is successful by year 5 and no concerns have been identified, Restoration Systems (RS) may propose to terminate monitoring at the Site and forego monitoring requirements for years 6 and 7. Early closure will only be provided through written approval from the USACE in consultation with the Interagency Review Team (NC IRT). Monitoring will be conducted by Axiom Environmental, Inc (AXE). Annual monitoring reports of the data collected will be submitted to the NCDMS by RS no later than December 31 of each monitoring year data is collected.

2.1 Streams

Annual monitoring will include development of channel cross-sections and substrate on riffles and pools. Data to be presented in graphic and tabular format will include 1) cross-sectional area, 2) bankfull width, 3) average depth, 4) maximum depth, 5) width-to-depth ratio, 6) bank height ratio, and 7) entrenchment ratio. Longitudinal profiles will not be measured routinely unless monitoring demonstrates channel bank or bed instability, in which case, longitudinal profiles may be required by the USACE along reaches of concern to track changes and demonstrate stability.

Visual assessment of in-stream structures will be conducted to determine if failure has occurred. Failure of a structure may be indicated by collapse of the structure, undermining of the structure, abandonment of the channel around the structure, and/or stream flow beneath the structure. In addition, visual assessments of the entire channel will be conducted in years 1-3, 5, and 7 of monitoring as outlined in NCDMS *Monitoring Requirements and Reporting Standards for Stream and/or Wetland Mitigation*. Areas of concern will be depicted on a plan view figure identifying the location of concern along with a written assessment and photograph of the area.

Year 1 (2016) Stream measurements were performed October 17-18, 2016. As a whole, monitoring measurements indicate minimal changes in the cross-sections as compared to as-built data. The channel geometry compares favorably with the proposed conditions as set forth in the detailed mitigation plan and as constructed.

Immediately after construction, before ground cover was fully established, multiple heavy rain events (2+ inches) caused some sedimentation in the streambed. This aggradation can be seen in several Year 1 (2016) cross-sections, however it is expected that the stream will naturally transport the sediment, and the aggradation is not of concern at this time.

The year 1 (2016) measurements for cross-sections 9 and 10 on UT-1 show stream bed erosion when compared with as-built data. Stream bed erosion was noted shortly after as-built measurements were taken, and were the resulted of the above mentioned rain events. It is evident bed material used during construction in this area was finer than it should have been. Two riffles show bed erosion, totaling approximately 50 feet

in length (approximately 1 percent of the project length). The area has remained stable throughout the year. RS has created a remedial action plan for this area that will be implemented during late winter of 2016/2017 (Section 3.0).

Across the site, all in-stream structures are intact and functioning as designed. No stream areas of concern other and then the two riffles noted above were identified during year 1 (2016) monitoring. Tables for year 1 data and annual quantitative assessments are included in Appendix D.

2.2 Vegetation

After planting was completed on April 8, 2016, an initial evaluation was performed to verify planting methods and to determine initial species composition and density. Supplemental planting and additional Site modifications will be implemented, if necessary.

During quantitative vegetation sampling, 14 sample plots (10-meter by 10-meter) were installed within the Site as per guidelines established in *CVS-EEP Protocol for Recording Vegetation*, *Version 4.2* (Lee et al. 2008). In each sample plot, vegetation parameters to be monitored include species composition and species density. Visual observations of the percent cover of shrub and herbaceous species will also be documented by photograph.

Year 1 (2016) stem count measurements were performed on October 13, 2016 and indicate an average of 332 planted stems per acre (excluding livestakes) across the Site; therefore, the Site is technically meeting vegetation success criteria. However, with monitoring data and on-site observations, it is clear planted stem density across the site is low. Six of the fourteen individual vegetation plots met success criteria based on planted stems alone. When including naturally recruited stems of green ash (*Fraxinus pennsylvanica*) and red maple (*Acer rubrum*) in plot 5; green ash and American beautyberry (*Callicarpa americana*) in plot 12; and American elm (*Ulmus americana*) and box elder (*Acer negundo*) in plot 13, plots 5, 12, and 13 were above success criteria. Low stem survival can be attributed to multiple factors, most notablely the initial site planting occurring very close to the beginning of the growing season, vigorous herbaceous completion, and sporadic rain events which left upland areas of the site dry for extended periods of the growing season. A remedial action plan has been developed and will be implemented before the end of 2016. Year 1 (2016) vegetation plot information can be found in Appendix C.

2.3 Wetland Hydrology

Three groundwater monitoring gauges were installed to take measurements after hydrological modifications were performed at the Site. Hydrological sampling will continue throughout the growing season at intervals necessary to satisfy jurisdictional hydrology success criteria (USEPA 1990). In addition, a surface water gauge has been installed in Tributary 3 to monitor flow regime of the tributary. Approximate locations of gauges are depicted on Figure 2 (Appendix A).

Hydrological sampling will continue throughout the growing season at intervals necessary to satisfy jurisdictional hydrology success criteria (USEPA 1990). In addition, an on-site rain gauge will document rainfall data for comparison of groundwater conditions with extended drought conditions and floodplain crest gauges will confirm overbank flooding events. All groundwater gauges were successful in year 1 (2016) (Appendix E).

3.0 REMEDIAL ACTION PLAN

A remedial action plan has been developed in order to address stream and vegetation problem areas observed during Year 1 (2016) monitoring (Figure 3, Appendix C). A completion report will be provided to NCDMS once the work has occurred.

3.1 Stream

The observed degradation in and adjacent to cross-sections 9 and 10 on UT-1 encompasses approximately 50 linear feet of stream (1 percent of the project length). As noted above, bed material placed during construction was too fine. All of UT-1 used bed material harvested on-site. It is uncommon for us not to catch too fine of material during the harvesting and placing of bed material however it does happen. In this case, it appears that an oversight did occur and too fine of material was used along this stretch. Fine materials washed from the riffle during heavy rainfall events, resulting in minor bed scour and a small, less than 6 inch head cut beginning to develop at the top of riffle. Suitable sized channel bed material is proposed to be installed at the proper elevation in two riffles within UT-1. Bed material will be installed such that bank toe protection is provided and planting with willow stakes will occur. Bank toe protection designates that channel bed material will extend up the lower one-third of the bank. The riffle will be monitored by established cross-sections 9 and 10. This work will occur in winter of 2016/2-17 and will be done by hand in order to minimize impact within the conservation easement.

3.2 Vegetation

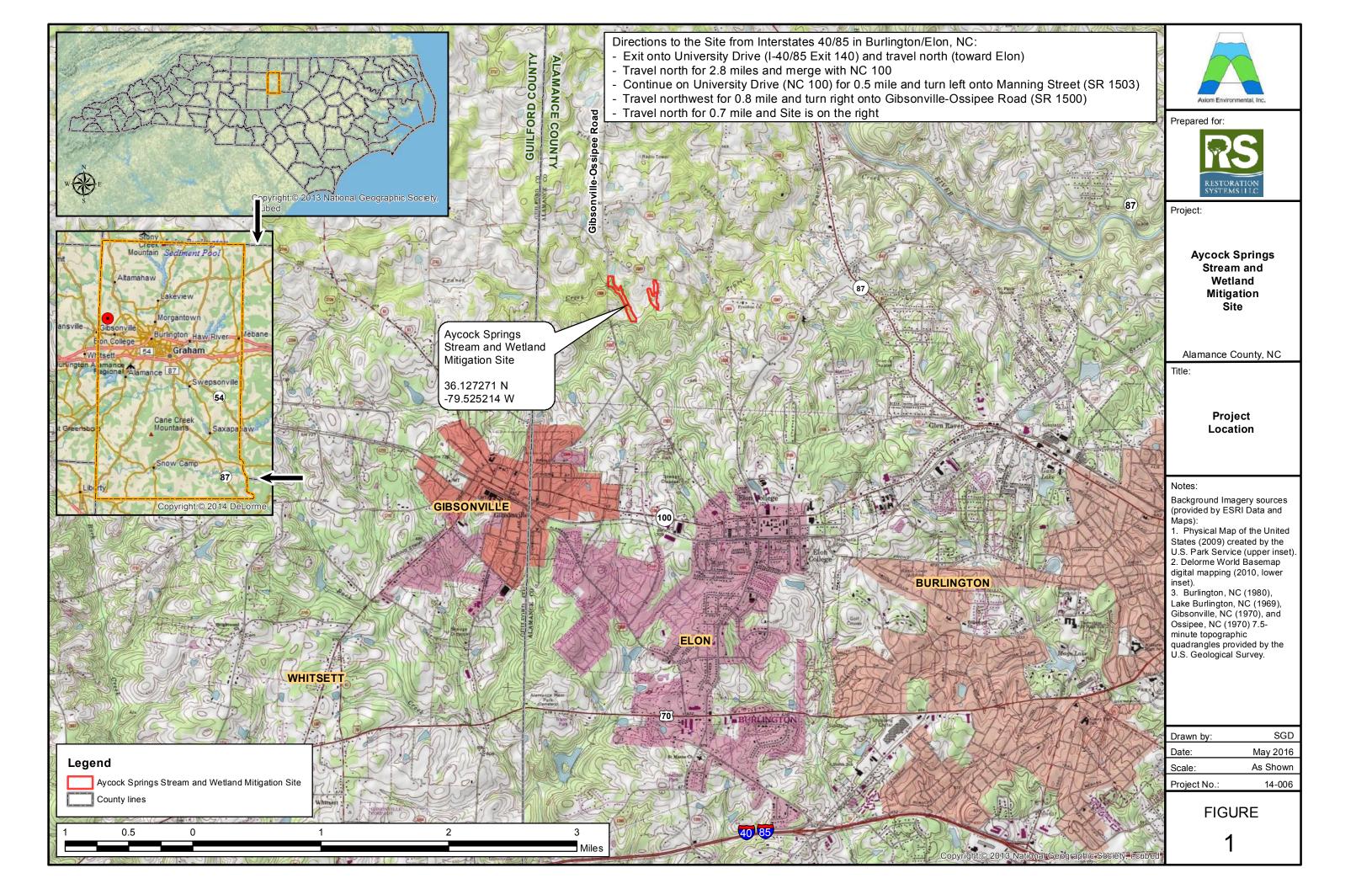
Multiple factors are contributing to poor vegetative success; a later than desired initial bare-root planting, heavy herbaceous competition primarily from fescue (Site was previously a cattle pasture), and sporadic rain events which left upland areas of the site dry for extended periods of the growing season. On site observation do indicate a greater survival of planted species within riparian areas. Uplands areas of the site are where survival rates were low.

The remedial action plan is to supplement the bare-root planting over 4.27 acres with 840 additional trees (590 1-gallon and 250 3-gallon species). Figure 3 (Appendix C) details the areas which will receive remedial planting along with density and number of species being placed into vegetation plots. Working with Carolina Silvics, RS has acquired and scheduled to re-planted identified areas in December of 2016. Insuring the highest degree of transplant survival. Species of trees will include willow oak, northern and south red oak, and pin oak. Mapped areas to be replanted are based on field observations.

The goal of the remedial action plan is to increase planted stem density across the remedial area site by 100 to 200 stems per acre. Although some vegetation plots are currently meeting success criteria, areas adjacent to them are not; these areas will still require supplemental planting. Stems added to vegetation plots will be flagged during planting and included in the year 2 (2017) annual monitoring report vegetation data. Once the replant has been completed, a final remedial planting figure will be provided.

It should be noted that RS is not proposing to bring up the density of vegetation plot 13 to success standards. This plot is within an existing wooded area and has a number of large natural recruit species (boxelder and American elm). An on-site determination will be made if any additional planted stems are warranted for this area. For now, we have proposed two additional stems be added to plot 13.

An herbicide treatment will be applied in order to suppress competition between the planted stems an herbaceous species such as fescue (*Festuca* sp.). This treatment is expected to occur in March/April 2017 and will be a one-time application.


4.0 REFERENCES

- Environmental Laboratory. 1987. Corps of Engineers Wetlands Delineation Manual. Technical Report Y-87-1. United States Army Engineer Waterways Experiment Station, Vicksburg, Mississippi.
- Environmental Laboratory. 2012. Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Eastern Mountains and Piedmont Region (Version 2.0). United States Army Engineer Research and Development Station, Vicksburg, Mississippi.
- Lee, M.T., R.K. Peet, S.D. Roberts, and T.R. Wentworth. 2008. CVS-EEP Protocol for Recording Vegetation. Version 4.2. North Carolina Department of Environment and Natural Resources, Ecosystem Enhancement Program. Raleigh, North Carolina.
- North Carolina Division of Water Quality (NCDWQ). 2001. Benthic Macroinvertebrate Monitoring Protocols for Compensatory Mitigation. 401/Wetlands Unit, Department of Environment and Natural Resources. Raleigh, North Carolina.
- North Carolina Division of Water Quality (NCDWQ). 2006. Standard Operating Procedures for Benthic Macroinvertebrates. Biological Assessment Unit, North Carolina Department of Environment and Natural Resources. Raleigh, North Carolina.
- North Carolina Division of Mitigation Services (NCDMS 2009). Cape Fear River Basin Restoration Priorities 2009 (online). Available: http://portal.ncdenr.org/c/document_library/get_file?uuid= 864e82e8-725c-415e-8ed9-c72dfcb55012&groupId=60329
- Schafale, M.P. and A.S. Weakley. 1990. Classification of the Natural Communities of North Carolina: Third Approximation. North Carolina Natural Heritage Program, Division of Parks and Recreation, North Carolina Department of Environment, Health, and Natural Resources. Raleigh, North Carolina.
- United States Department of Agriculture (USDA). 1960. Soil Survey of Alamance County, North Carolina. Soil Conservation Service.
- United States Environmental Protection Agency (USEPA). 1990. Mitigation Site Type Classification (MiST). EPA Workshop, August 13-15, 1989. EPA Region IV and Hardwood Research Cooperative, NCSU, Raleigh, North Carolina.

APPENDIX A

PROJECT BACKGROUND DATA AND MAPS

- Figure 1. Vicinity Map
- Table 1. Project Components and Mitigation Credits
- Table 2. Project Activity and Reporting History
- Table 3. Project Contacts Table
- Table 4. Project Baseline Information and Attributes

Table 1. Project Components and Mitigation Credits Aycock Springs Mitigation Site

Mitigation Credits				
Stream Stream Riparian Wetland Nonriparian Wetland				
Restoration Enhancement Re-establishment		Re-establishment		
3237	344.1	0.5	1	
·				

3237	344.1		0.5				
	Projects Components						
Station Range	Existing Linear Footage/ Acreage	Priority Approach	Restoration/ Restoration Equivalent	Restoration Linear Footage/ Acreage	Mitigation Ratio	Mitigation Credits	Comment
UT 1 Station 10+04 to 23+21	1173	PI	Restoration	1317-24= 1293	1:1	1293	24 lf of UT 1 is located outside of easement and is not credit generating
UT 2 Station 10+00 to 16+75	723	PI	Restoration	675	1:1	675	
UT 3 Station 10+00 to 11+22	147	PI	Restoration	122	1.5:1	81.3	*** The upper 122 linear feet of channel is in a violation area and is generating credit at a reduced ratio of 1.5:1
UT 3 Station 11+22 to 12+12	16	PI	Restoration	90	1:1	90	
UT 4 Station 10+00 to 14+13	448	PI	Restoration	413-107= 306	1:1	306	****The upper 107 linear feet of channel is in a violation area and is not credit generating
Travis Creek Station 10+00 to 15+78	578		EII	578-20= 558	2.5:1	223.2	The upper 20 linear feet of Travis Creek is within a powerline easement and is not credit generating
Travis Creek Station 15+78 to 17+87	274	PII	Restoration	209	1:1	209	
Travis Creek Station 17+87 to 18+86	99		EII	99	2.5:1	39.6	
Travis Creek Station 23+71 to 30+35	936	PI	Restoration	664	1:1	664	

Table 1. Project Components and Mitigation Credits (continued) Aycock Springs Mitigation Site

	Component Summation				
Restoration Level Stream (linear footage) Riparian Wetland (acreage) Nonriparian Wetland (acreage)					
Restoration	3237	0.5			
Enhancement (Level 1)	122				
Enhancement (Level II)	657				
Enhancement		1.5**			
Totals	4016				
Mitigation Units	3581.1 SMUs	0.5 Riparian WMUs	0.00 Nonriparian WMUs		

^{**}Wetland enhancement acreage is not included in mitigation credit calculations as per RFP 16-005568 requirements.

^{***}Prior to Site selection, the landowner received a violation for riparian buffer impacts due to clearing of trees adjacent to streams draining to Jordan Lake (NOV-2013-BV-0001). As a result of this violation, the upper 122 linear feet of UT 3 has a reduced credit ratio of 1.5:1. On-site visits conducted with USACE representatives determined that the functional uplift of project restoration to UT 3 would be satisfactory to generate credit at this ratio.

^{****} Prior to Site selection, the landowner received a violation for unauthorized discharge of fill material into Waters of the United States. Fill resulted from unpermitted upgrades to a farm pond dam, including widening the dam footprint, dredging stream channel, and casting spoil material adjacent to the stream channel on jurisdictional wetlands. Prior to restoration activities the landowner was required to obtain an after-the-fact permit to resolve the violations of Section 301 of the Clean Water Act (Action ID:SAW-2014-00665). In addition, stream reaches and wetland areas associated with the violation area have been removed from credit generation – UT 4 begins credit generation at Station 11+07).

Table 2. Project Activity and Reporting History

Aycock Springs Mitigation Site

Activity or Deliverable	Data Collection Complete	Completion or Delivery
Technical Proposal (RFP No. 16-005568)		October 2013
DMS Contract No. 5791		February 2014
Mitigation Plan	October 2014	May 2015
Construction Plans		June 2015
Construction Earthwork		April 6, 2016
Planting		April 8, 2016
As-Built Documentation	April 2016	May 2016
Year 1 Monitoring	October 2016	December 2016

Table 3. Project Contacts Table

Aycock Springs Mitigation Site

Full Delivery Provider	Restoration Systems		
	1101 Haynes Street, Suite 211		
	Raleigh, North Carolina 27604		
	Worth Creech		
	919-755-9490		
Designer and Monitoring Provider	Axiom Environmental, Inc.		
	218 Snow Avenue		
	Raleigh, NC 27603		
	Grant Lewis		
	919-215-1693		

Table 4. Project Attribute Table Aycock Springs Mitigation Site

Project Information Aycock Springs Restoration Site Project Name Project County Alamance County, North Carolina Project Area (acres) 15 Project Coordinates (latitude & latitude) 36.127271°N, 79.525214°W **Project Watershed Summary Information** Physiographic Province Piedmont Project River Basin Cape Fear USGS HUC for Project (14-digit) 03030002030010 NCDEQ Sub-basin for Project 03-06-02 Project Drainage Area (acres) 26-3008 Project Drainage Area Percentage <2% Impervious Area

Table 4. Project Attribute Table (continued)
Avcock Springs Mitigation Site

_ • • •	Aycock Springs Mitigation Site Reach Summary Information					
Parameters Reach Summary	Travis Cr	UT 1/UT2	UT 3	UT 4		
Length of reach (linear feet)	1550	1966	212	413		
Valley Classification	1550 1900 212 413 alluvial			413		
Drainage Area (acres)	3008	68	26	119		
NCDWQ Stream ID Score	3008	30.75/25.5	26.75	27.5		
NCDWR Water Quality Classification				21.3		
Existing Morphological Description (Rosgen 1996)	Ca	WS-V, NSW Cg 5/6-, Eg 5-, and Fc 5-type				
Existing Wolphological Description (Rosgen 1990) Existing Evolutionary Stage (Simon and Hupp 1986)	IV	IV IV	III	III		
Existing Evolutionary Stage (Simon and Tupp 1980)	· ·	ena, Mixed Al				
Underlying Mapped Soils	,	Gullied Land	Worsham			
Drainage Class		ed, moderately ned, variable,				
Hydric Soil Status		Nonhydric a	nd Hydric			
Slope	0.0023	0.0249	0.0153	0.0093		
FEMA Classification	AE	Special	Hazard Floo	d Area		
Native Vegetation Community	Piedmont Alluvial Forest/Dry-Mesic Oak-Hickory Forest			ak-Hickory		
Watershed Land Use/Land Cover (Site)	42% forest, 53% agricultural land, <5% low density residential/impervious surface					
Watershed Land Use/Land Cover (Cedarock	65% forest, 30% agricultural land, <5% low					
Reference Channel)	density residential/impervious surface					
Percent Composition of Exotic Invasive Vegetation		< 5%	/o			
Wetland Summar	ry Information	1				
Parameters		Wetla	nds			
Wetland acreage		1.6				
Wetland Type		Ripar	ian			
Mapped Soil Series	Worsh	nam and Mixe	ed Alluvial L	and		
Drainage Class		Poorly d	rained			
Hydric Soil Status		Hydr	ric			
Source of Hydrology	Gro	oundwater, str	eam overban	k		
Hydrologic Impairment	Incised st	reams, compa	cted soils, li	vestock		
Native Vegetation Community	Piedmon	nt/Low Mount	ain Alluvial	Forest		
Percent Composition of Exotic Invasive Vegetation		<5%	o			
Regulatory Co	nsiderations					
Regulation	Applicable?	Resolved?		orting entation		
Waters of the United States-Section 401	Yes	Resolved		Permit		
Waters of the United States-Section 404	Yes	Resolved	-	tification		
Endangered Species Act	No		CE	Doc.		
Historic Preservation Act	No		_	Doc.		
Coastal Zone Management Act	No			ΙA		
FEMA Floodplain Compliance	Yes In progress CLOMR/LOMR					
Essential Fisheries Habitat	No			ΙA		

APPENDIX B

VISUAL ASSESSMENT DATA

Figure 2. Current Conditions Plan View (CCPV)
Tables 5A-5E. Visual Stream Morphology Stability Assessment
Table 6. Vegetation Condition Assessment

Vegetation Plot Photographs

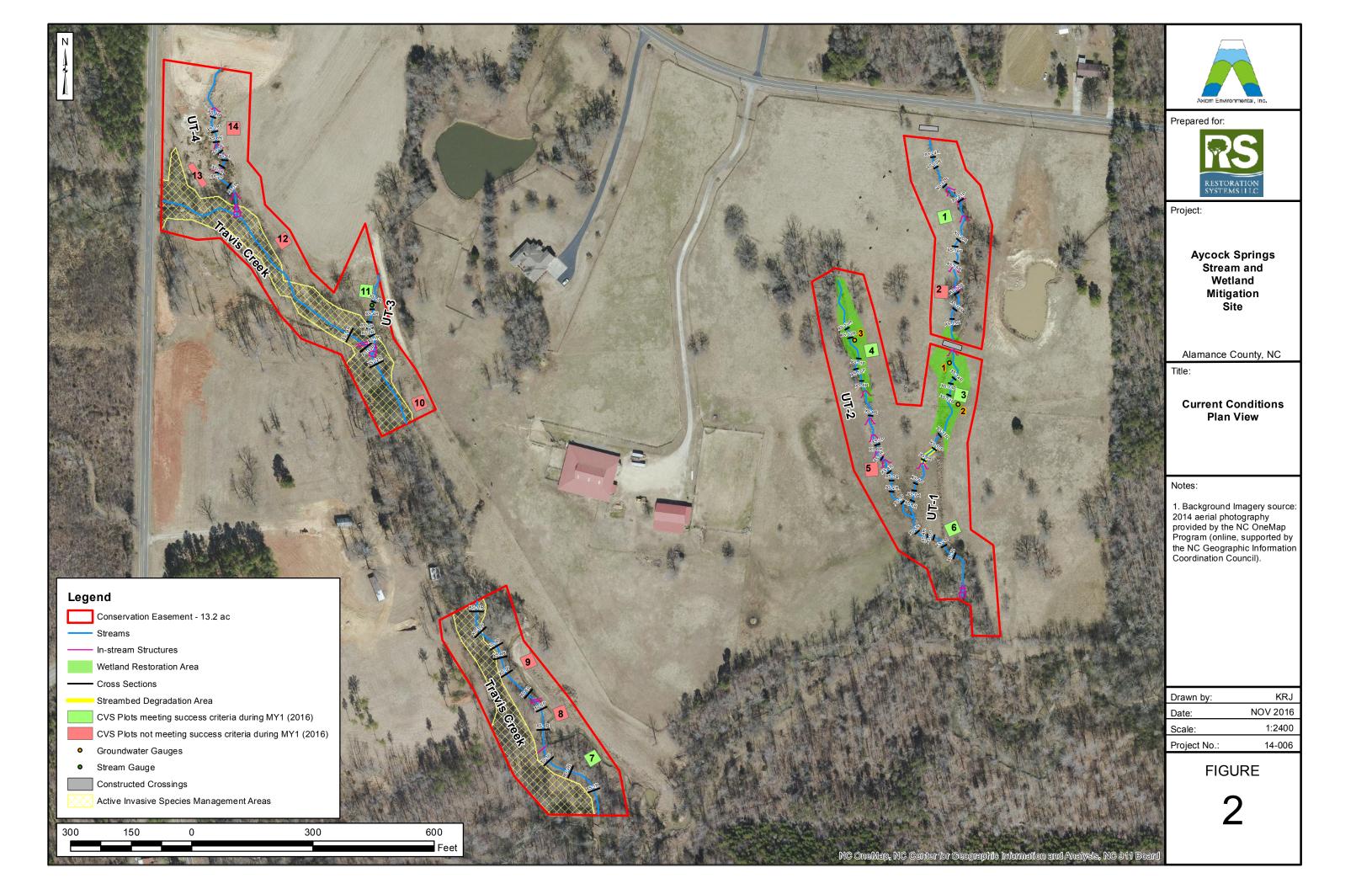


Table 5A <u>Visual Stream Morphology Stability Assessment</u>
Reach ID Aycock Springs - Travis Creek
Assessed Length 2128

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	Vertical Stability (Riffle and Run units)	<u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%			
		Degradation - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	Texture/Substrate - Riffle maintains coarser substrate	10	10			100%			
	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6)	9	9			100%			
		Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle)	9	9			100%			
	4.Thalweg Position	Thalweg centering at upstream of meander bend (Run)	9	9			100%			
		Thalweg centering at downstream of meander (Glide)	9	9			100%			
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%			100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%			100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%			100%
				Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	9	9			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	9	9			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	9	9			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%.	9	9			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio ≥ 1.6 Rootwads/logs providing some cover at base-flow.	9	9			100%			

Table 5B Reach ID Assessed Length Visual Stream Morphology Stability Assessment

Aycock Springs UT1

1317

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	Vertical Stability (Riffle and Run units)	Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%			
		2. <u>Degradation</u> - Evidence of downcutting			1	50	96%			
	2. Riffle Condition	Texture/Substrate - Riffle maintains coarser substrate	44	45			98%			
	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6)	43	44			98%			
		Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle)	44	44			100%			
	4.Thalweg Position	Thalweg centering at upstream of meander bend (Run)	44	44			100%			
		Thalweg centering at downstream of meander (Glide)	44	44			100%			
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%			100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%			100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%			100%
				Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	10	10			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	10	10			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	10	10			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%.	10	10			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio ≥ 1.6 Rootwads/logs providing some cover at base-flow.	10	10			100%			

Table 5C Reach ID Assessed Length

Visual Stream Morphology Stability Assessment

Aycock Springs UT2

675

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Stabilizing Woody	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	Vertical Stability (Riffle and Run units)	<u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%			
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	<u>Texture/Substrate</u> - Riffle maintains coarser substrate	25	25			100%			
	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6)	24	24			100%			
		Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle)	24	24			100%			
	4.Thalweg Position	Thalweg centering at upstream of meander bend (Run)	24	24			100%			
		Thalweg centering at downstream of meander (Glide)	24	24			100%			
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%			100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%			100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%			100%
				Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	6	6			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	6	6			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	6	6			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%.	6	6			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio ≥ 1.6 Rootwads/logs providing some cover at base-flow.	6	6			100%			

Table 5D <u>Visual Stream Morphology Stability Assessment</u>
Reach ID Aycock Springs UT3
Assessed Length 212

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Stabilizing Woody	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	Vertical Stability (Riffle and Run units)	Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%			
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	Texture/Substrate - Riffle maintains coarser substrate	9	9			100%			
	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6)	8	8			100%			
		Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle)	8	8			100%			
	4.Thalweg Position	Thalweg centering at upstream of meander bend (Run)	8	8			100%			
		Thalweg centering at downstream of meander (Glide)	8	8			100%			
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%			100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%			100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%			100%
				Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	1	1			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	1	1			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	1	1			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%.	1	1			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio ≥ 1.6 Rootwads/logs providing some cover at base-flow.	1	1			100%			

Table 5E Reach ID Assessed Length Visual Stream Morphology Stability Assessment

Aycock Springs UT4

413

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	Vertical Stability (Riffle and Run units)	Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%			
		Degradation - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	Texture/Substrate - Riffle maintains coarser substrate	9	9			100%			
	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6)	8	8			100%			
		Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle)	8	8			100%			
	4.Thalweg Position	Thalweg centering at upstream of meander bend (Run)	8	8			100%			
		Thalweg centering at downstream of meander (Glide)	8	8			100%			
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%			100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%			100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%			100%
				Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	5	5			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	5	5			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	5	5			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%.	5	5			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio ≥ 1.6 Rootwads/logs providing some cover at base-flow.	5	5			100%			

Table 6

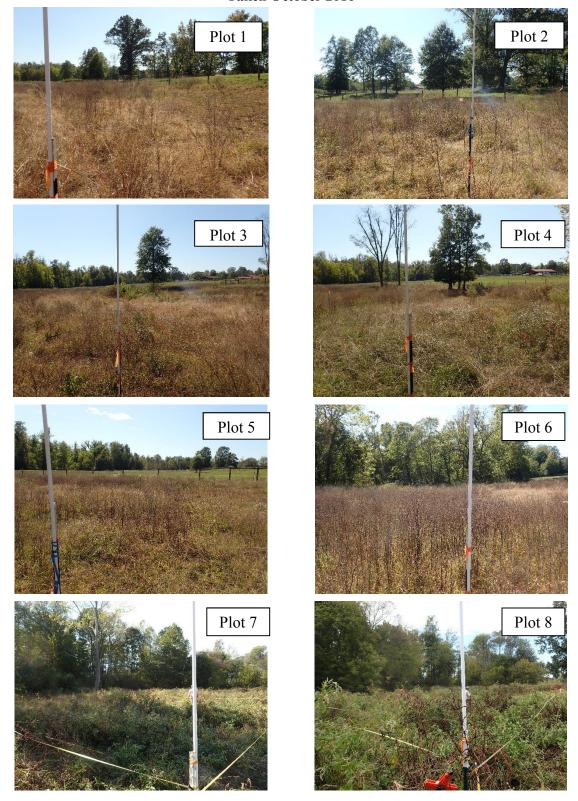
Vegetation Condition Assessment

Aycock Springs

Planted Acreage

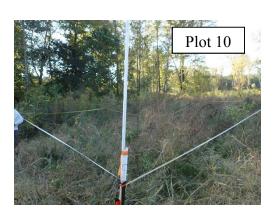
11.9

	1110					
Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Planted Acreage
1. Bare Areas	None	0.1 acres	none	0	0.00	0.0%
2. Low Stem Density Areas	A high rate of planted stem mortality was observed throughout the planting area, causing low stem density sitewide.	0.1 acres	none	0	11.90	100.0%
2B. Low Planted Stem Density Areas	A high rate of planted stem mortality was observed throughout the planting area, causing low stem density sitewide.	0.1 acres	none	0	11.90	100.0%
			Total	0	11.90	100.0%
3. Areas of Poor Growth Rates or Vigor	None	0.25 acres	none	0	0.00	0.0%
		Cu	mulative Total	0	11.90	100.0%


Easement Acreage²

13.3

Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Easement Acreage
4. Ongoing Invasive Species Management Areas ⁴	Management of Chinese privet and multiflora rose is active and ongoing along Travis Creek.	1000 SF	none	2	2.38	17.9%
5. Easement Encroachment Areas ³	None	none	none	0	0.00	0.0%


- 1 = Enter the planted acreage within the easement. This number is calculated as the easement acreage minus any existing mature tree stands that were not subject to supplemental planting of the understory, the channel acreage, crossings or any other elements not directly planted as part of the project effort.
- 2 = The acreage within the easement boundaries.
- 3 = Encroachment may occur within or outside of planted areas and will therefore be calculated against the overall easement acreage. In the event a polygon is cataloged into items 1, 2 or 3 in the table and is the result of encroachment, the associated acreage should be tallied in the relevant item (i.e., item 1,2 or 3) as well as a parallel tally in item 5.
- 4 = Invasives may occur in or out of planted areas, but still within the easement and will therefore be calculated against the overall easement acreage. Invasives of concern/interest are listed below. The list of high concern spcies are those with the potential to directly outcompete native, young, woody stems in the short-term (e.g. monitoring period or shortly thereafter) or affect the community structure for existing, more established tree/shrub stands over timeframes that are slightly longer (e.g. 1-2 decades). The low/moderate concern group are those species that generally do not have this capacity over the timeframes discussed and therefore are not expected to be mapped with regularity, but on the integration of its hat period on the webserver their coverage, density or distribution is suppressing the viability, density, or growth of planted woody stems. Decisions as to whether remediation will be needed are based on the integration of risk factors by DMS such as species present, their coverage, distribution relative to native biomass, and the practicality of treatment. For example, even modest amounts of Kudzu or Japanese Knotweed early in the projects history will warrant control, but potentially large coverages of Microstegium in the herb layer will not likley trigger control because of the limited capacities to impact tree/shrub layers within the timeframes discussed and the potential impacts of treating extensive amounts of ground cover. Those species with the "watch list" designator in gray shade are of interest as well, but have yet to be observed across the state with any frequency. Those in red italics are of particular interest given their extreme risk/threat level for mapping as points where isolated specimens are found, particularly ealry in a projects monitoring history. However, areas of discreet, dense patches will of course be mapped as polygons. The symbology scheme below was one that was found to be helpful for symbolzing invasives polygons, particularly for situations where the conditio

Aycock Springs Year 1 Vegetation Monitoring Photographs Taken October 2016

Aycock Springs Year 1 Vegetation Monitoring Photographs Taken October 2016 (continued)

APPENDIX C VEGETATION PLOT DATA

Table 7. Vegetation Plot Criteria Attainment

Table 8. CVS Vegetation Plot Metadata

Table 9. Total and Planted Stems by Plot and Species

Figure 3. Remedial Action Plan

Table 7. Vegetation Plot Criteria Attainment Based on Planted Stems

Vegetation Plot ID	Vegetation Survival Threshold Met?	Tract Mean
1	Yes	
2	No	
3	Yes	
4	Yes	
5	No*	
6	Yes	
7	Yes	420/
8	No	43%
9	No	
10	No	
11	Yes	
12	No*	
13	No*	
14	No	

^{*}These plots did not meet success criteria based on planted stems only; however, when including naturally recruited stems of green ash (*Fraxinus pennsylvanica*) and red maple (*Acer rubrum*) in plot 5; green ash and American beautyberry (*Callicarpa Americana*) in plot 12; and American elm (*Ulmus Americana*) and box elder (*Acer negundo*) in plot 13, plots 5, 12, and 13 were above success criteria.

Table 8. CVS Vegetation Plot Metadata

Table 6. CVS Vegetation I lot IV	Actauata
Report Prepared By	Corri Faquin
Date Prepared	10/26/2016 11:20
database name	RS-Aycock_2016-v2.3.1.mdb
database location	\\AE-FILE\Share\Business\Projects\14\14-006 Acyock Springs Detailed\YEAR-01\CVS
computer name	CORRI2-PC
file size	56627200
DESCRIPTION OF WORKSHE	EETS IN THIS DOCUMENT
Metadata	Description of database file, the report worksheets, and a summary of project(s) and project data.
Proj, planted	Each project is listed with its PLANTED stems per acre, for each year. This excludes live stakes.
	Each project is listed with its TOTAL stems per acre, for each year. This includes live stakes, all planted stems, and all
Proj, total stems	natural/volunteer stems.
Plots	List of plots surveyed with location and summary data (live stems, dead stems, missing, etc.).
Vigor	Frequency distribution of vigor classes for stems for all plots.
Vigor by Spp	Frequency distribution of vigor classes listed by species.
Damage	List of most frequent damage classes with number of occurrences and percent of total stems impacted by each.
Damage by Spp	Damage values tallied by type for each species.
Damage by Plot	Damage values tallied by type for each plot.
Planted Stems by Plot and Spp	A matrix of the count of PLANTED living stems of each species for each plot; dead and missing stems are excluded.
	A matrix of the count of total living stems of each species (planted and natural volunteers combined) for each plot; dead
ALL Stems by Plot and spp	and missing stems are excluded.
PROJECT SUMMARY	
Project Code	14-006
project Name	Aycock Springs
Description	
River Basin	Cape Fear
length(ft)	
stream-to-edge width (ft)	
area (sq m)	
Required Plots (calculated)	
Sampled Plots	14

Table 9. Total and Planted Stems by Plot and Species DMS Project Code 14.006. Project Name: Aycock Springs

												(Current	t Plot D	ata (MY	1 201 6	5)									
			14.0	006-01-	0001	14.0	006-01-	0002	14.0	06-01-0	0003	14.0	06-01-	0004	14.0	06-01-	0005	14.0	06-01-	-0006	14.	006-01-	0007	14.0	06-01	L-0008
Scientific Name	Common Name	Species Type	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	T									
Acer negundo	boxelder	Tree																								
Acer rubrum	red maple	Tree															4			1	L					
Betula nigra	river birch	Tree													1	1	. 1	1	1	1 1	L			1		1 1
Callicarpa americana	American beautyberry	Shrub																								
Carpinus caroliniana	American hornbeam	Tree																3	(1)	3	3					
Cephalanthus occidentalis	common buttonbush	Shrub																		4	1					
Cornus amomum	silky dogwood	Shrub	8	8	8	3	3	3	3	3	3	3	3	3	3	3	3	10	10) 10) 8	8	8	4		4 4
Cornus florida	flowering dogwood	Tree																								
Diospyros virginiana	common persimmon	Tree																								
Fraxinus pennsylvanica	green ash	Tree						1	L		1	. 1	1	3	1	1	. 2									
Nyssa sylvatica	blackgum	Tree																			1	. 1	1 1			
Platanus occidentalis	American sycamore	Tree										1	1	1												
Quercus	oak	Tree							1	1	1	-												1		1 1
Quercus alba	white oak	Tree	1	1	1																					
Quercus michauxii	swamp chestnut oak	Tree							2	2	2	2	2	2												
Quercus pagoda	cherrybark oak	Tree																								
Quercus phellos	willow oak	Tree																								
Quercus rubra	northern red oak	Tree	4	4	4				2	2	2	2	2	2				2	2	2 2	2					
Sambucus canadensis	Common Elderberry	Shrub				2	2	2 2	2 2	2	2							1	1	1 1	L					
Ulmus alata	winged elm	Tree																								
Ulmus americana	American elm	Tree												1												
		Stem count	13	13	13	5	5	5 6	10	10	11	. 9	9	12	. 5	5	10	17	17	7 22	2 9	9	9 9	6		6 6
		size (ares)		1			1			1			1			1			1			1			1	
		size (ACRES)		0.02			0.02			0.02			0.02			0.02			0.02			0.02			0.02	•
		Species count	3	3	3	2	2	2 3	5	5	6	5	5	6	3	3	4	5	5	5 7	7 2	2	2 2	3		3 3
		Stems per ACRE	526.1	526.1	526.1	202.3	202.3	242.8	404.7	404.7	445.2	364.2	364.2	485.6	202.3	202.3	404.7	688	688	890.3	364.2	364.2	364.2	242.8	242.	8 242.8

Color for Density

Exceeds requirements by 10%

Exceeds requirements, but by less than 10%

Fails to meet requirements, by less than 10%

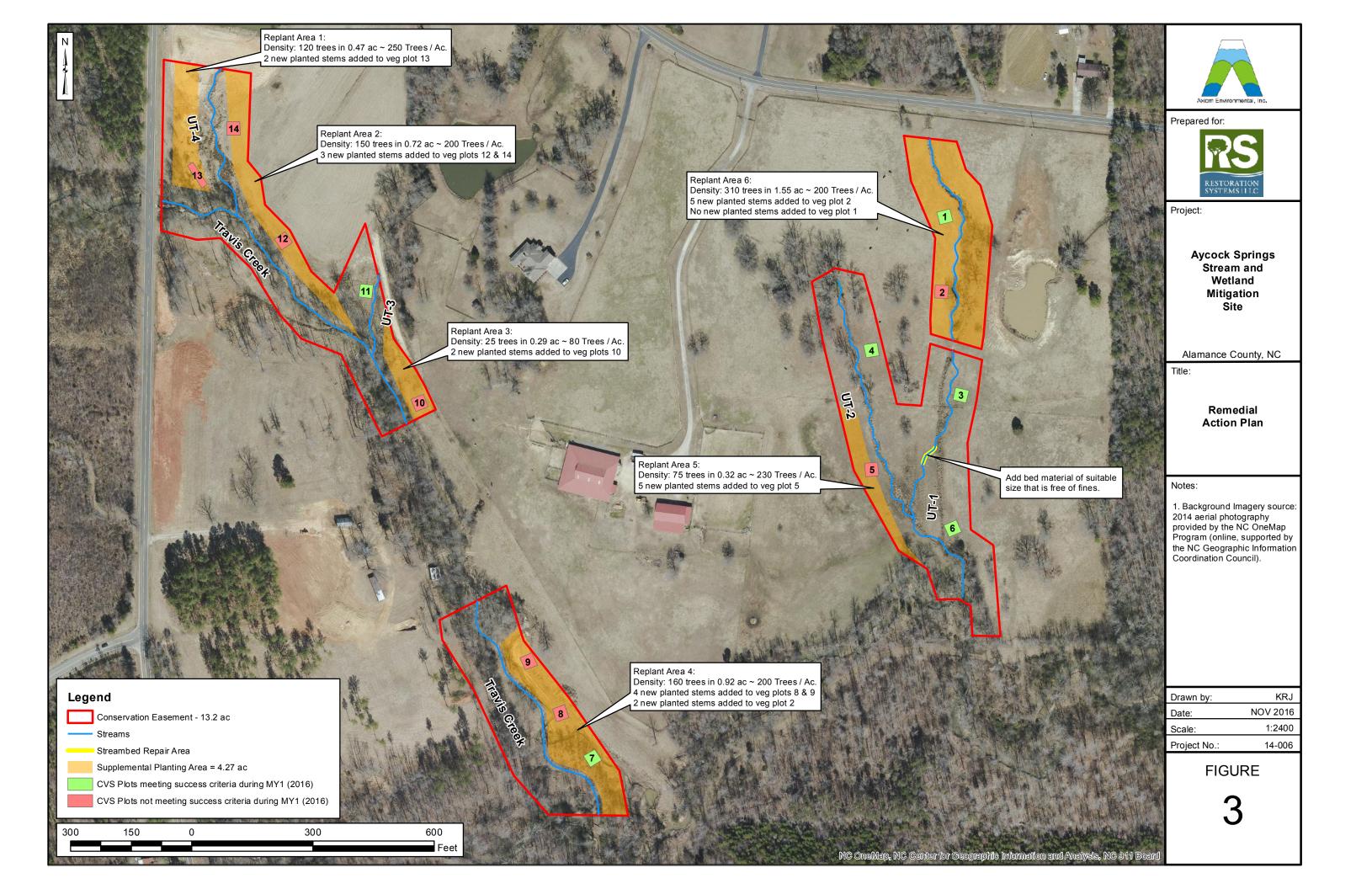
Fails to meet requirements by more than 10%

PnoLS = Planted excluding livestakes
P-all = Planting including livestakes
T = All planted and natural recruits including livestakes
T includes natural recruits

Table 9. Total and Planted Stems by Plot and Species (continued)
DMS Project Code 14.006. Project Name: Aycock Springs

										Current	t Plot D	ata (M)	/1 2016)									Annua	al Means		
			14.0	006-01-	0009	14.0	006-01	-0010	14.0	06-01-	0011	14.0	06-01-	0012	14.0	006-01-	0013	14.0	006-01-	0014	M	IY1 (201	16)	M	Y0 (201	6)
Scientific Name	Common Name	Species Type	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т
Acer negundo	boxelder	Tree															5						5	5		7
Acer rubrum	red maple	Tree																						5		
Betula nigra	river birch	Tree																2	2	2	2 5	5		5 9	9	9
Callicarpa americana	American beautyberry	Shrub												1									1	1		
Carpinus caroliniana	American hornbeam	Tree	1	1	1				1	1	1										5	5	5	5 7	7	7
Cephalanthus occidentalis	common buttonbush	Shrub																					4	1		
Cornus amomum	silky dogwood	Shrub	4	4	4	3	3	3 3	3 2	2	2				1	1	1				52	52	52	57	57	57
Cornus florida	flowering dogwood	Tree							4	4	4	L									4	4		4	4	4
Diospyros virginiana	common persimmon	Tree				1	-	1 1	L												1	1	1	1 2	2	2
Fraxinus pennsylvanica	green ash	Tree									2	2	2	3				1	1	1	L 5	5	13	3	3	5
Nyssa sylvatica	blackgum	Tree										2	2	2							3	3	3	3 6	6	6
Platanus occidentalis	American sycamore	Tree																			1	1	1	1 5	5	5
Quercus	oak	Tree				1	1	1 1	L									1	1	1	L 4	4		11	11	11
Quercus alba	white oak	Tree																			1	1	1	1 2	2	2
Quercus michauxii	swamp chestnut oak	Tree										1	1	1							5	5		5		
Quercus pagoda	cherrybark oak	Tree																1	1	1	1	1	1	1 6	6	6
Quercus phellos	willow oak	Tree				2	2	2 2	2 3	3	3	8			1	1	1				6	6	6	5 18	18	18
Quercus rubra	northern red oak	Tree																1	1	1	11	11	11	1 13	13	13
Sambucus canadensis	Common Elderberry	Shrub	1	1	1				2	2	2	2 2	2	2				1	1	1	11	11	11	1 62	62	62
Ulmus alata	winged elm	Tree																								2
Ulmus americana	American elm	Tree															2						3	3		
		Stem count	6	6	6	7	-	7 7	7 12	12	14	1 7	7	9	2	2	9	7	7	7	7 115	115	141	205	205	216
		size (ares)		1	•		1	<u>-</u>		1	-		1	-		1	•		1	-		14	-	-	14	
		size (ACRES)		0.02			0.02			0.02			0.02			0.02			0.02			0.35			0.35	
		Species count	3	3	3	4	4	1 4	5	5	6	4	4	5	2	2	4	6	6	6	5 15	15	20	14	14	16
		Stems per ACRE	242.8	242.8	242.8	283.3	283.3	3 283.3	485.6	485.6	566.6	283.3	283.3	364.2	80.94	80.94	364.2	283.3	283.3	283.3	332.4	332.4	407.6	5 592.6	592.6	624.4

Color for Density


Exceeds requirements by 10%

Exceeds requirements, but by less than 10%

Fails to meet requirements, by less than 10%

Fails to meet requirements by more than 10%

PnoLS = Planted excluding livestakes
P-all = Planting including livestakes
T = All planted and natural recruits including livestakes
T includes natural recruits

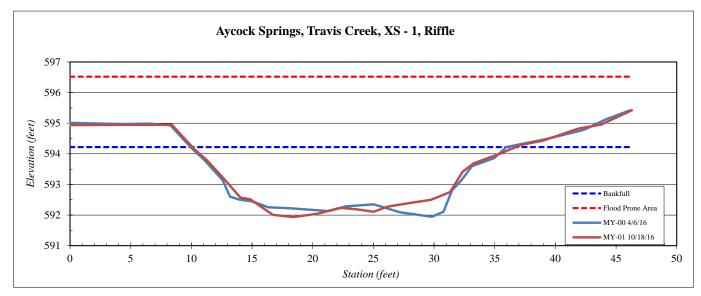
APPENDIX D STREAM SURVEY DATA

Cross-section Plots

Substrate Plots

Tables 10a-e. Baseline Stream Data Summary

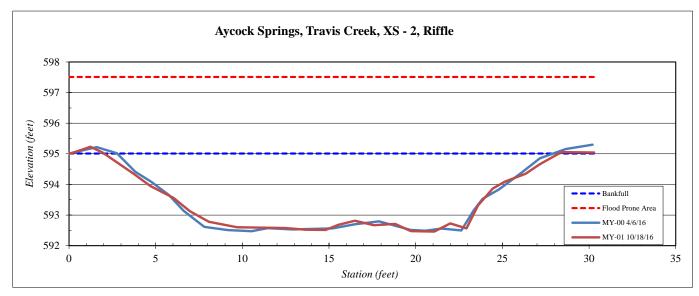
Tables 11a-l. Monitoring Data


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	Travis Creek, XS - 1, Riffle
Feature	Riffle
Date:	10/17/2016
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	594.94
4.5	594.95
6.6	594.95
8.4	594.95
10.2	594.15
11.3	593.78
12.9	593.11
14.0	592.57
14.9	592.51
16.7	592.01
18.4	591.93
20.4	592.04
22.3	592.23
23.6	592.19
25.0	592.11
26.2	592.28
28.1	592.40
29.7	592.50
31.3	592.75
32.4	593.42
33.3	593.7
35.5	594.0
37.2	594.3
39.0	594.4
41.9	594.8
43.8	595.0
46.3	595.4

SUMMARY DATA	
Bankfull Elevation:	594.2
Bankfull Cross-Sectional Area:	40.0
Bankfull Width:	26.7
Flood Prone Area Elevation:	596.5
Flood Prone Width:	150.0
Max Depth at Bankfull:	2.3
Mean Depth at Bankfull:	1.5
W / D Ratio:	17.8
Entrenchment Ratio:	5.6
Bank Height Ratio:	1.0

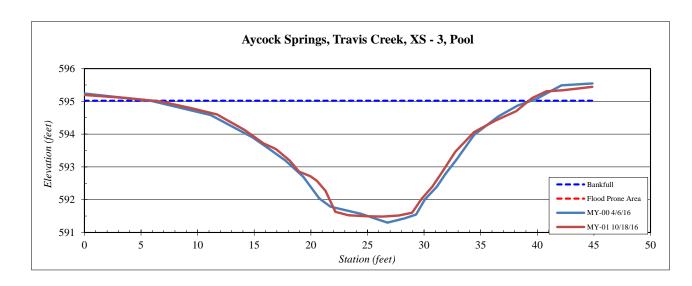
|--|


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	Travis Creek, XS - 2, Riffle
Feature	Riffle
Date:	10/17/2016
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	594.99
1.2	595.23
2.0	595.04
3.8	594.34
4.7	593.95
6.0	593.56
7.0	593.13
8.1	592.78
9.7 11.1	592.60
11.1	592.59
12.5	592.58
13.6	592.52
14.8	592.51
15.5	592.68
16.5	592.81
17.6	592.67
18.8	592.71
19.7	592.47
20.4	592.47
21.1	592.46
22.0	592.7
22.9	592.6
23.6	593.3
24.4	593.9
25.1	594.1
26.3	594.3
27.2	594.7
28.4	595.1
30.3	595.0

SUMMARY DATA	
Bankfull Elevation:	595.0
Bankfull Cross-Sectional Area:	47.4
Bankfull Width:	26.2
Flood Prone Area Elevation:	597.5
Flood Prone Width:	150.0
Max Depth at Bankfull:	2.5
Mean Depth at Bankfull:	1.8
W / D Ratio:	14.5
Entrenchment Ratio:	5.7
Bank Height Ratio:	1.0

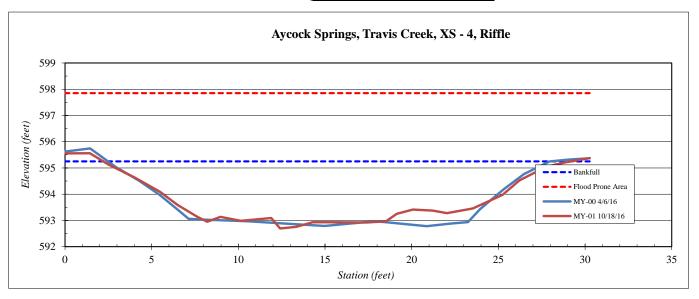
JF


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	Travis Creek, XS - 3, Pool
Feature	Pool
Date:	10/17/2016
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	595.2
3.7	595.1
6.7	595.0
9.4	594.8
11.7	594.6
14.1	594.1
15.8	593.7
16.9	593.5
18.1	593.2
18.9	592.9
20.0	592.7
20.5	592.6
21.3	592.3
22.2	591.6
23.3	591.5
25.0	591.5
26.3	591.5
27.8	591.5
28.9	591.6
29.8	592.0
30.7	592.4
31.6	592.8
32.8	593.5
34.4	594.1
36.3	594.4
38.1	594.7
39.5	595.1
40.8	595.3
42.3	595.3
44.9	595.4

SUMMARY DATA	
Bankfull Elevation:	595.0
Bankfull Cross-Sectional Area:	55.8
Bankfull Width:	33.2
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	3.5
Mean Depth at Bankfull:	1.7
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

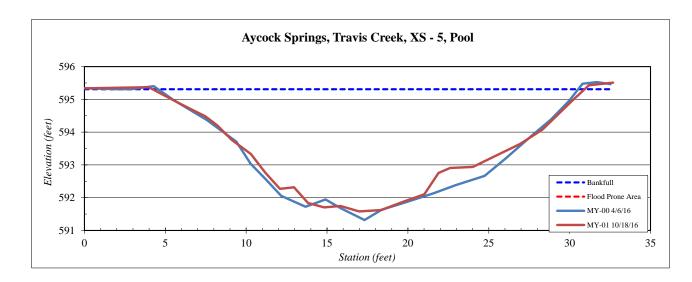
Stream Type	C/E


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	Travis Creek, XS - 4, Riffle
Feature	Riffle
Date:	10/17/2016
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	595.56
1.4	595.56
2.5	595.13
4.0	594.64
5.5	594.10
6.5	593.58
7.6	593.13
8.2	592.95
9.0	593.13
10.1	592.98
11.9	593.09
12.4	592.69
13.3	592.76
14.3	592.93
15.1	592.93
17.4	592.92
18.5	592.97
19.1	593.25
20.1	593.42
21.2	593.38
22.0	593.3
23.5	593.5
25.2	594.0
26.2	594.5
27.8	595.0
28.8	595.2
30.3	595.4

SUMMARY DATA	
Bankfull Elevation:	595.3
Bankfull Cross-Sectional Area:	44.6
Bankfull Width:	27.0
Flood Prone Area Elevation:	597.9
Flood Prone Width:	150.0
Max Depth at Bankfull:	2.6
Mean Depth at Bankfull:	1.7
W / D Ratio:	16.3
Entrenchment Ratio:	5.6
Bank Height Ratio:	1.0

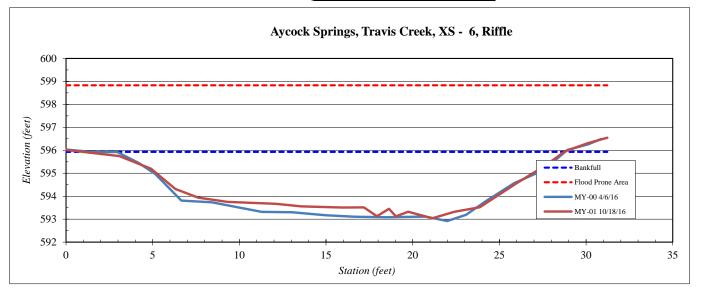
Stream Type	C/E


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	Travis Creek, XS - 5, Pool
Feature	Pool
Date:	10/17/2016
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	595.3
4.0	595.4
5.7	594.9
6.7	594.7
7.5	594.5
8.2	594.2
9.1	593.8
10.3	593.3
11.2	592.8
12.1	592.3
13.0	592.3
13.8	591.8
14.8	591.7
15.8	591.7
17.0	591.6
18.3	591.6
19.8	591.9
21.0	592.1
21.9	592.8
22.6	592.9
24.0	592.9
26.9	593.6
28.3	594.1
30.2	595.0
31.2	595.4
32.7	595.5

SUMMARY DATA	
Bankfull Elevation:	595.3
Bankfull Cross-Sectional Area:	58.1
Bankfull Width:	26.7
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	3.7
Mean Depth at Bankfull:	2.2
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

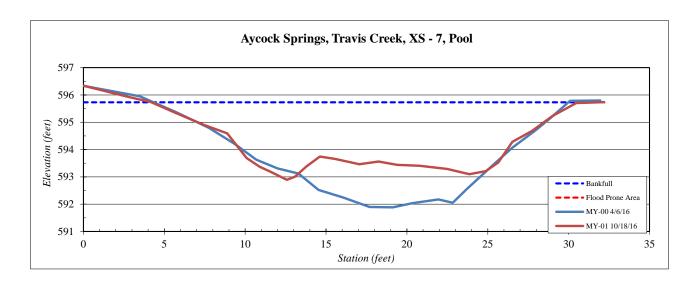
Stream Type C/E	Stream Type	C/E
-----------------	-------------	-----


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	Travis Creek, XS - 6, Riffle
Feature	Riffle
Date:	10/17/2016
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	596.02
3.1	595.75
4.9	595.19
6.3	594.32
7.6	593.93
9.3	593.75
12.1	593.67
13.6	593.56
15.9	593.51
17.2	593.51
17.9	593.13
18.6	593.45
19.0	593.12
19.7	593.33
21.1	593.04
22.4	593.33
23.9	593.52
24.9	594.02
25.9	594.54
27.7	595.35
28.8	595.9
30.1	596.3
31.2	596.5

SUMMARY DATA	
Bankfull Elevation:	595.9
Bankfull Cross-Sectional Area:	50.6
Bankfull Width:	27.7
Flood Prone Area Elevation:	598.8
Flood Prone Width:	150.0
Max Depth at Bankfull:	2.9
Mean Depth at Bankfull:	1.8
W / D Ratio:	15.2
Entrenchment Ratio:	5.4
Bank Height Ratio:	1.0

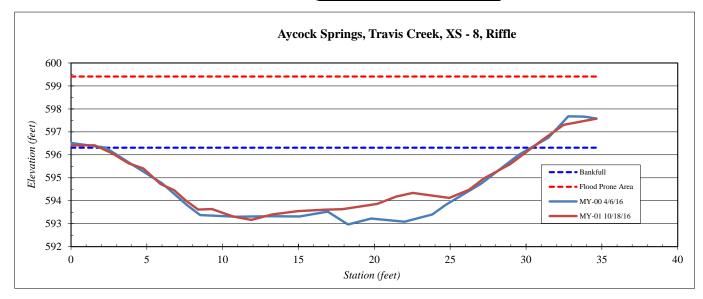
Stream Type	C/E


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	Travis Creek, XS - 7, Pool
Feature	Pool
Date:	10/17/2016
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	596.3
2.8	595.9
4.2	595.7
5.6	595.4
7.4	594.9
8.9	594.6
10.1	593.7
10.9	593.4
11.6	593.2
12.6	592.9
13.1	593.0
13.8	593.4
14.6	593.7
15.6	593.7
17.1	593.5
18.2	593.6
19.4	593.4
20.8	593.4
22.5	593.3
23.9	593.1
24.9	593.2
25.7	593.5
26.5	594.3
27.7	594.7
29.0	595.2
30.5	595.7
32.2	595.7

SUMMARY DATA	
Bankfull Elevation:	595.7
Bankfull Cross-Sectional Area:	45.8
Bankfull Width:	27.7
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	2.8
Mean Depth at Bankfull:	1.7
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

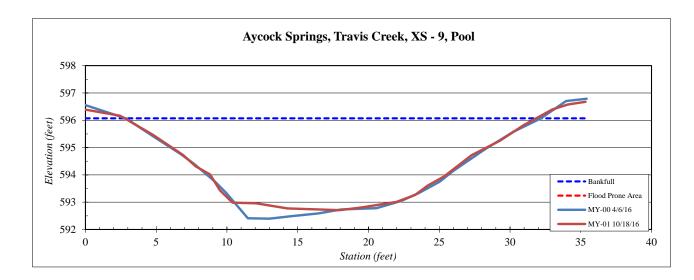
Stream Type C/E	Stream Type	C/E
-----------------	-------------	-----


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	Travis Creek, XS - 8, Riffle
Feature	Riffle
Date:	10/17/2016
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	596.41
1.6	596.41
2.7	596.07
3.8	595.63
4.8	595.40
5.9	594.73
6.8	594.46
7.6	594.01
8.4	593.61
9.3	593.64
10.7	593.31
11.9	593.17
13.3	593.40
15.0	593.55
16.7	593.61
17.9	593.63
20.2	593.86
21.5	594.18
22.5	594.34
24.9	594.12
26.2	594.5
27.2	595.0
29.0	595.6
31.2	596.7
32.5	597.3
34.6	597.6

SUMMARY DATA	
Bankfull Elevation:	596.3
Bankfull Cross-Sectional Area:	57.4
Bankfull Width:	28.5
Flood Prone Area Elevation:	599.4
Flood Prone Width:	150.0
Max Depth at Bankfull:	3.1
Mean Depth at Bankfull:	2.0
W / D Ratio:	14.2
Entrenchment Ratio:	5.3
Bank Height Ratio:	1.0

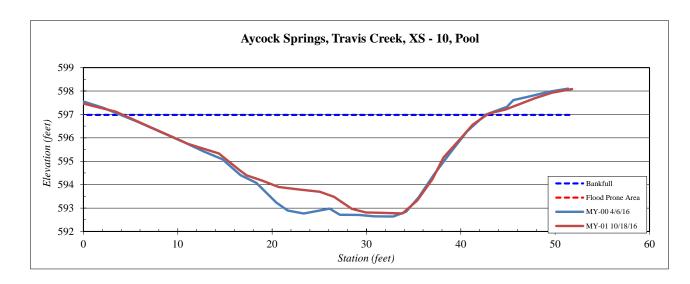
Stream Type	C/E


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	Travis Creek, XS - 9, Pool
Feature	Pool
Date:	10/17/2016
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	596.4
2.4	596.2
4.7	595.5
6.9	594.7
7.8	594.3
8.8	594.0
9.5	593.4
10.4	593.0
12.1	593.0
14.3	592.8
16.2	592.7
18.0	592.7
19.6	592.8
22.0	593.0
23.3	593.3
24.2	593.6
25.3	593.9
27.3	594.7
29.3	595.3
30.9	595.8
33.0	596.4
34.1	596.6
35.3	596.7

SUMMARY DATA	
Bankfull Elevation:	596.1
Bankfull Cross-Sectional Area:	63.1
Bankfull Width:	29.1
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	3.4
Mean Depth at Bankfull:	2.2
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

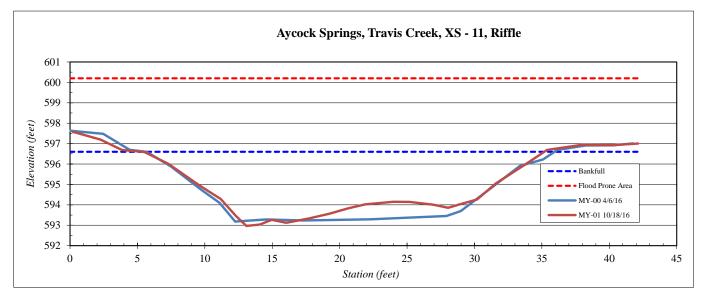
Stream Type C/E	Stream Type	C/E
-----------------	-------------	-----


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	Travis Creek, XS - 10, Pool
Feature	Pool
Date:	10/17/2016
Field Crew:	Perkinson, Keith

Station	Elevation
-0.5	597.5
3.4	597.1
7.2	596.4
11.1	595.7
14.4	595.3
16.5	594.6
17.3	594.4
18.9	594.2
20.7	593.9
22.8	593.8
25.0	593.7
26.6	593.5
28.4	593.0
29.9	592.8
31.7	592.8
33.8	592.8
35.4	593.3
37.0	594.2
38.2	595.2
40.0	596.0
41.3	596.6
42.9	597.0
44.8	597.2
47.8	597.7
49.7	597.9
51.8	598.1

SUMMARY DATA	
Bankfull Elevation:	597.0
Bankfull Cross-Sectional Area:	91.0
Bankfull Width:	38.6
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	4.2
Mean Depth at Bankfull:	2.4
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

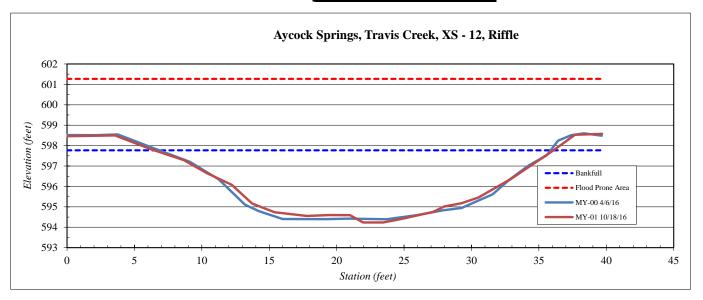
Stream Type	C/E
-------------	-----


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	Travis Creek, XS - 11, Riffle
Feature	Riffle
Date:	10/17/2016
Field Crew:	Perkinson, Keith

Station	Elevation
0.2	597.58
2.3	597.20
3.8	596.69
5.5	596.59
7.3	596.01
9.6	594.94
11.2	594.29
12.3	593.45
13.1	592.97
14.1	593.03
15.0	593.27
16.0	593.12
17.7	593.33
19.2	593.56
20.6	593.83
21.9	594.03
24.0	594.15
25.2	594.14
27.0	594.00
28.0	593.86
28.9	594.0
30.2	594.3
31.6	595.0
33.6	595.9
35.4	596.7
38.0	596.9
40.2	596.9
42.1	597.0

SUMMARY DATA	
Bankfull Elevation:	596.6
Bankfull Cross-Sectional Area:	66.6
Bankfull Width:	29.8
Flood Prone Area Elevation:	600.2
Flood Prone Width:	150.0
Max Depth at Bankfull:	3.6
Mean Depth at Bankfull:	2.2
W / D Ratio:	13.3
Entrenchment Ratio:	5.0
Bank Height Ratio:	1.0

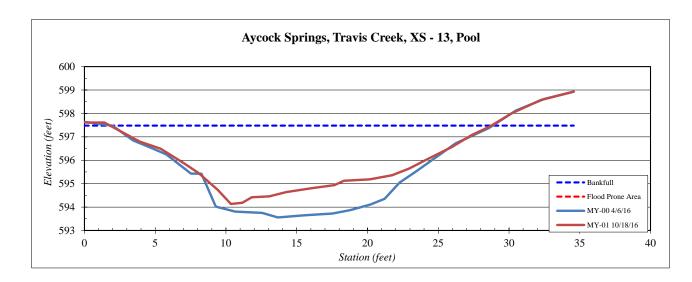
J 1


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	Travis Creek, XS - 12, Riffle
Feature	Riffle
Date:	10/17/2016
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	598.46
3.6	598.50
6.2	597.83
8.7	597.29
10.4	596.64
12.2	596.08
13.7	595.16
15.4	594.74
17.8	594.55
19.5	594.60
21.0	594.59
22.0	594.24
23.4	594.24
24.7	594.40
27.2	594.76
28.0	595.02
29.3	595.18
30.5	595.46
32.9	596.36
34.9	597.23
36.1	597.8
37.7	598.5
39.7	598.6

SUMMARY DATA	
Bankfull Elevation:	597.8
Bankfull Cross-Sectional Area:	66.4
Bankfull Width:	29.6
Flood Prone Area Elevation:	601.3
Flood Prone Width:	150.0
Max Depth at Bankfull:	3.5
Mean Depth at Bankfull:	2.2
W / D Ratio:	13.2
Entrenchment Ratio:	5.1
Bank Height Ratio:	1.0

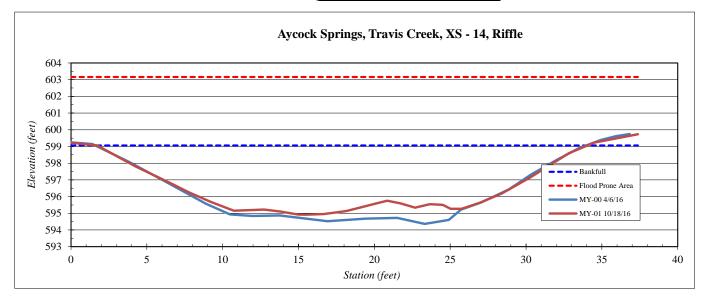
Stream Type	C/E


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	Travis Creek, XS - 13, Pool
Feature	Pool
Date:	10/17/2016
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	597.6
1.4	597.6
3.9	596.8
5.4	596.5
7.1	595.8
8.1	595.5
9.4	594.7
10.3	594.1
11.2	594.2
11.8	594.4
13.0	594.5
14.3	594.6
16.1	594.8
17.7	594.9
18.3	595.1
20.2	595.2
21.7	595.4
22.9	595.6
24.2	596.0
26.0	596.6
27.4	597.1
28.7	597.4
30.2	598.0
32.2	598.6
34.6	598.9

SUMMARY DATA	
Bankfull Elevation:	597.5
Bankfull Cross-Sectional Area:	50.3
Bankfull Width:	26.9
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	3.3
Mean Depth at Bankfull:	1.9
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

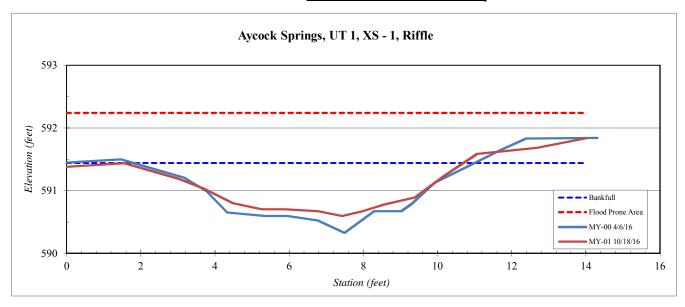
|--|


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	Travis Creek, XS - 14, Riffle
Feature	Riffle
Date:	10/17/2016
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	599.22
1.7	599.06
4.2	597.82
6.6	596.80
7.7	596.27
9.2	595.68
10.7	595.15
12.7	595.22
13.8	595.11
15.0	594.92
15.5	594.92
16.7	594.95
18.1	595.13
18.9	595.32
20.1	595.58
20.8	595.75
21.7	595.59
22.7	595.33
23.7	595.54
24.5	595.51
25.0	595.3
25.7	595.3
27.0	595.6
28.4	596.2
30.3	597.1
32.8	598.6
34.5	599.2
37.4	599.7

SUMMARY DATA	
Bankfull Elevation:	599.1
Bankfull Cross-Sectional Area:	92.4
Bankfull Width:	32.3
Flood Prone Area Elevation:	603.2
Flood Prone Width:	150.0
Max Depth at Bankfull:	4.1
Mean Depth at Bankfull:	2.9
W / D Ratio:	11.3
Entrenchment Ratio:	4.6
Bank Height Ratio:	1.0

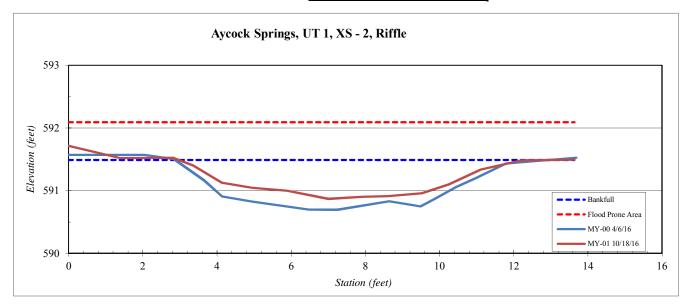
Stream Type	C/E


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 1, XS - 1, Riffle
Feature	Riffle
Date:	10/18/2016
Field Crew:	Perkinson, Keith

Station	Elevation
-5.0	591.33
-1.4	591.33
1.5	591.44
3.0	591.19
3.7	591.04
4.5	590.80
5.3	590.70
5.9	590.70
6.8	590.67
7.4	590.60
8.0	590.67
8.6	590.78
9.4	590.89
10.2	591.22
11.1	591.59
12.7	591.68
14.0	591.84

SUMMARY DATA	
Bankfull Elevation:	591.4
Bankfull Cross-Sectional Area:	4.7
Bankfull Width:	9.2
Flood Prone Area Elevation:	592.2
Flood Prone Width:	90.0
Max Depth at Bankfull:	0.8
Mean Depth at Bankfull:	0.5
W / D Ratio:	18.0
Entrenchment Ratio:	9.8
Bank Height Ratio:	1.0

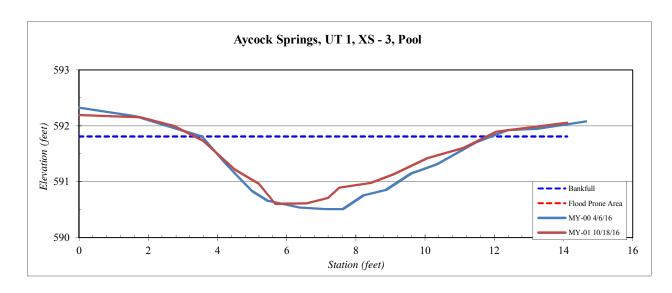
Stream Type C/E


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 1, XS - 2, Riffle
Feature	Riffle
Date:	10/18/2016
Field Crew:	Perkinson, Keith

Station	Elevation
-0.1	591.73
1.4	591.52
2.8	591.52
3.4	591.40
4.1	591.12
5.0	591.04
5.9	591.00
7.0	590.87
7.9	590.90
8.6	590.91
9.5	590.96
10.3	591.10
11.1	591.34
12.2	591.49
13.6	591.49

SUMMARY DATA	
Bankfull Elevation:	591.5
Bankfull Cross-Sectional Area:	3.7
Bankfull Width:	9.3
Flood Prone Area Elevation:	592.1
Flood Prone Width:	90.0
Max Depth at Bankfull:	0.6
Mean Depth at Bankfull:	0.4
W / D Ratio:	23.4
Entrenchment Ratio:	9.7
Bank Height Ratio:	1.0

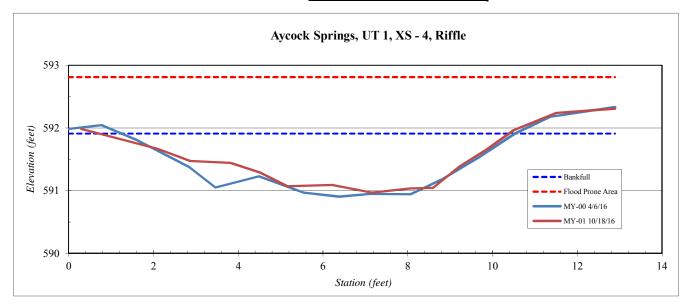
Stream Type	C/E
-------------	-----


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 1, XS - 3, Pool
Feature	Pool
Date:	10/18/2016
Field Crew:	Perkinson, Keith

Elevation
592.2
592.2
592.0
591.7
591.2
591.0
590.6
590.6
590.7
590.9
591.0
591.1
591.4
591.6
591.9
592.1

SUMMARY DATA	
Bankfull Elevation:	591.8
Bankfull Cross-Sectional Area:	5.6
Bankfull Width:	8.4
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.2
Mean Depth at Bankfull:	0.7
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

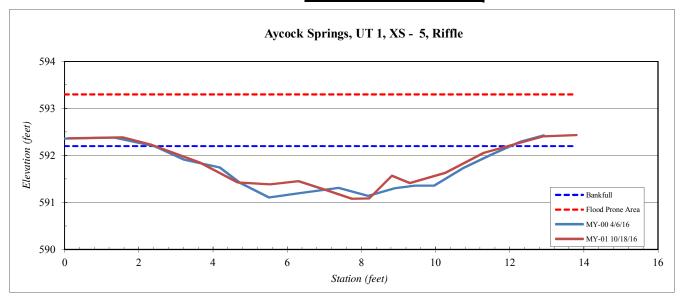
Stream Type C/E


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 1, XS - 4, Riffle
Feature	Riffle
Date:	10/18/2016
Field Crew:	Perkinson, Keith

Station	Elevation
0.3	591.99
2.1	591.67
2.9	591.47
3.8	591.44
4.5	591.29
5.2	591.07
6.2	591.09
7.2	590.97
8.0	591.04
8.6	591.05
9.2	591.39
9.9	591.65
10.5	591.96
11.5	592.24
12.9	592.31
	i

SUMMARY DATA	
Bankfull Elevation:	591.9
Bankfull Cross-Sectional Area:	5.5
Bankfull Width:	9.7
Flood Prone Area Elevation:	592.8
Flood Prone Width:	90.0
Max Depth at Bankfull:	0.9
Mean Depth at Bankfull:	0.6
W / D Ratio:	17.1
Entrenchment Ratio:	9.3
Bank Height Ratio:	1.0

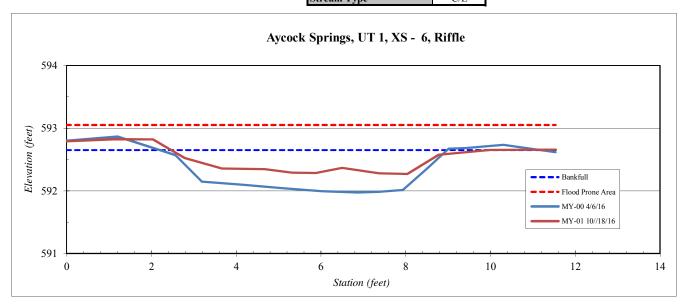
Stream Type C/E


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 1, XS - 5, Riffle
Feature	Riffle
Date:	10/18/2016
Field Crew:	Perkinson, Keith

Station	Elevation
0.1	592.37
1.6	592.38
2.3	592.23
3.7	591.85
4.7	591.43
5.5	591.39
6.3	591.45
7.2	591.24
7.7	591.08
8.2	591.08
8.8	591.57
9.3	591.42
10.3	591.63
11.3	592.06
12.3	592.28
12.9	592.41
13.8	592.44

SUMMARY DATA	
Bankfull Elevation:	592.2
Bankfull Cross-Sectional Area:	5.9
Bankfull Width:	9.5
Flood Prone Area Elevation:	593.3
Flood Prone Width:	90.0
Max Depth at Bankfull:	1.1
Mean Depth at Bankfull:	0.6
W / D Ratio:	15.3
Entrenchment Ratio:	9.5
Bank Height Ratio:	1.0

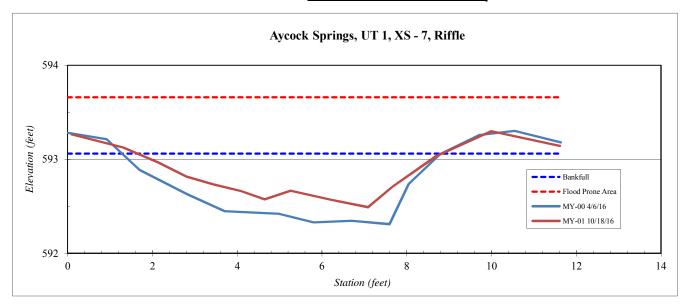
Stream Type C/E


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 1, XS - 6, Riffle
Feature	Riffle
Date:	10/18/2016
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	592.79
1.1	592.82
2.0	592.82
2.8	592.53
3.7	592.36
4.7	592.35
5.3	592.29
5.9	592.29
6.5	592.36
7.4	592.28
8.0	592.27
8.8	592.57
10.0	592.65
11.5	592.65
	1

SUMMARY DATA	
Bankfull Elevation:	592.7
Bankfull Cross-Sectional Area:	1.9
Bankfull Width:	7.5
Flood Prone Area Elevation:	593.1
Flood Prone Width:	90.0
Max Depth at Bankfull:	0.4
Mean Depth at Bankfull:	0.3
W / D Ratio:	29.6
Entrenchment Ratio:	12.0
Bank Height Ratio:	1.0

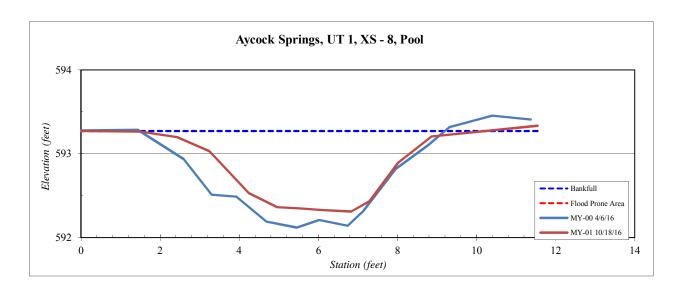
Stream Type C/E


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 1, XS - 7, Riffle
Feature	Riffle
Date:	10/18/2016
Field Crew:	Perkinson, Keith

Station	Elevation
0.1	593.27
1.3	593.12
2.1	592.97
2.8	592.81
3.4	592.73
4.1	592.66
4.7	592.57
5.3	592.67
5.3 6.2	592.57
7.1	592.49
7.7	592.71
8.7	593.04
10.0	593.30
11.6	593.14
	1

SUMMARY DATA	
Bankfull Elevation:	593.1
Bankfull Cross-Sectional Area:	2.4
Bankfull Width:	7.2
Flood Prone Area Elevation:	593.7
Flood Prone Width:	90.0
Max Depth at Bankfull:	0.6
Mean Depth at Bankfull:	0.3
W / D Ratio:	21.6
Entrenchment Ratio:	12.5
Bank Height Ratio:	1.0

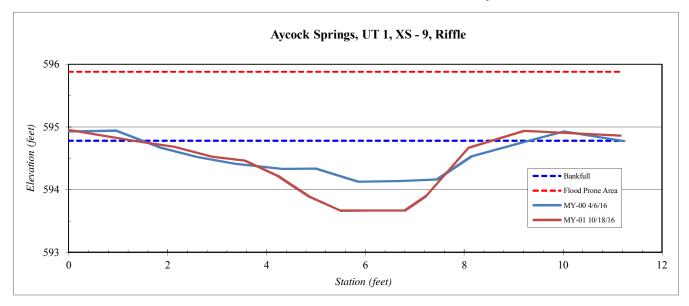
Stream Type	C/E
-------------	-----


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 1, XS - 8, Pool
Feature	Pool
Date:	10/18/2016
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	593.3
1.5	593.3
2.4	593.2
3.2	593.0
4.2	592.5
5.0	592.4
5.6	592.3
6.1	592.3
6.8	592.3
7.3	592.4
8.0	592.9
8.9	593.2
11.5	593.3

SUMMARY DATA	
Bankfull Elevation:	593.3
Bankfull Cross-Sectional Area:	4.1
Bankfull Width:	8.7
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.0
Mean Depth at Bankfull:	0.5
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

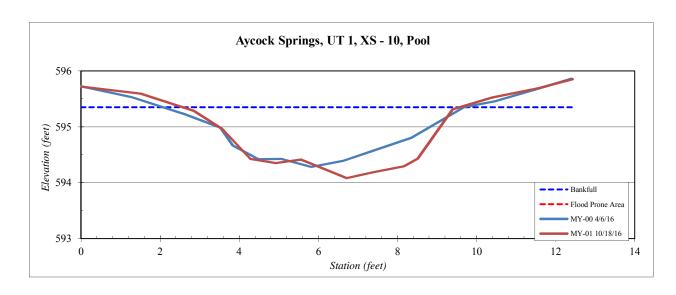
Stream Type	C/E
-------------	-----


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 1, XS - 9, Riffle
Feature	Riffle
Date:	10/18/2016
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	594.95
1.3	594.78
2.1	594.68
2.9	594.53
3.6	594.47
4.2	594.22
4.9	593.89
5.5	593.66
6.1	593.66
6.8	593.67
7.2	593.90
8.1	594.67
9.2	594.94
11.2	594.86

SUMMARY DATA	
Bankfull Elevation:	594.8
Bankfull Cross-Sectional Area:	4.1
Bankfull Width:	7.2
Flood Prone Area Elevation:	595.9
Flood Prone Width:	90.0
Max Depth at Bankfull:	1.1
Mean Depth at Bankfull:	0.6
W / D Ratio:	12.6
Entrenchment Ratio:	12.5
Bank Height Ratio:	1.0

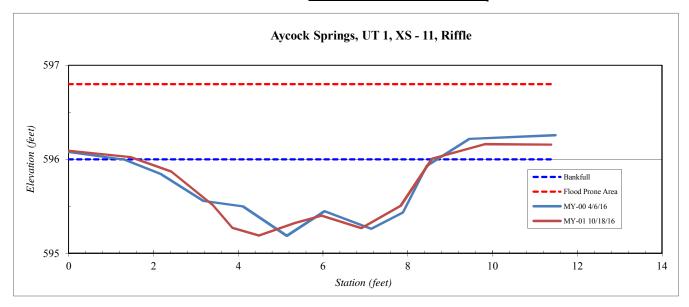
Stream Type	C/E


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 1, XS - 10, Pool
Feature	Pool
Date:	10/18/2016
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	595.7
1.5	595.6
2.9	595.3
3.6	595.0
4.3	594.4
4.9	594.4
5.6	594.4
6.7	594.1
7.4	594.2
8.2	594.3
8.5	594.4
9.4	595.3
10.4	595.5
11.6	595.7
12.4	595.9

SUMMARY DATA	
Bankfull Elevation:	595.4
Bankfull Cross-Sectional Area:	5.6
Bankfull Width:	7.0
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.3
Mean Depth at Bankfull:	0.8
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

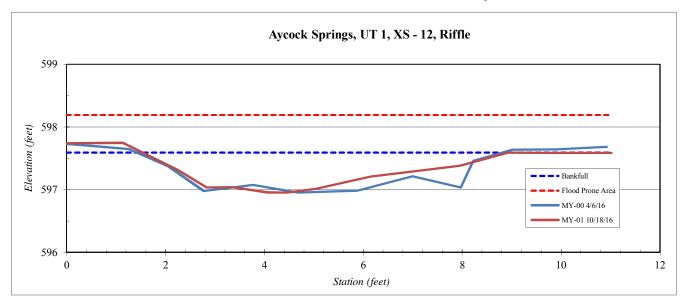
Stream Type	C/E
-------------	-----


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 1, XS - 11, Riffle
Feature	Riffle
Date:	10/18/2016
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	596.09
1.5	596.02
2.4	595.87
3.4	595.51
3.9	595.27
4.5	595.19
5.3	595.32
6.0	595.40
6.9	595.27
7.8	595.51
8.6	596.01
9.8	596.16
11.4	596.16

SUMMARY DATA	
Bankfull Elevation:	596.0
Bankfull Cross-Sectional Area:	3.5
Bankfull Width:	7.0
Flood Prone Area Elevation:	596.8
Flood Prone Width:	90.0
Max Depth at Bankfull:	0.8
Mean Depth at Bankfull:	0.5
W / D Ratio:	14.0
Entrenchment Ratio:	12.9
Bank Height Ratio:	1.0

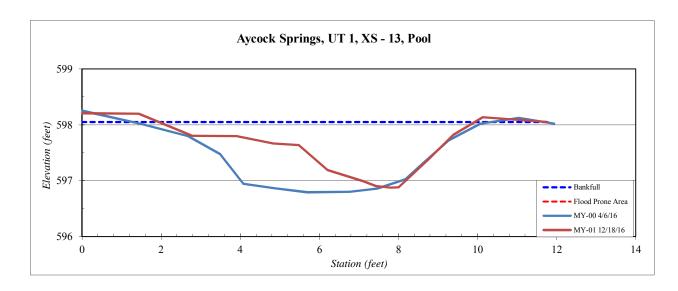
Stream Type	C/E
-------------	-----


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 1, XS - 12, Riffle
Feature	Riffle
Date:	10/18/2016
Field Crew:	Perkinson, Keith

Station	Elevation
-0.2	597.74
1.1	597.75
2.3	597.31
2.8	597.04
3.3	597.04
4.1	596.95
4.5	596.96
5.0	597.01
6.1	597.21
8.0	597.38
8.9	597.59
9.8	597.59
11.0	597.59

SUMMARY DATA	
Bankfull Elevation:	597.6
Bankfull Cross-Sectional Area:	2.8
Bankfull Width:	7.4
Flood Prone Area Elevation:	598.2
Flood Prone Width:	90.0
Max Depth at Bankfull:	0.6
Mean Depth at Bankfull:	0.4
W / D Ratio:	19.6
Entrenchment Ratio:	12.2
Bank Height Ratio:	1.0

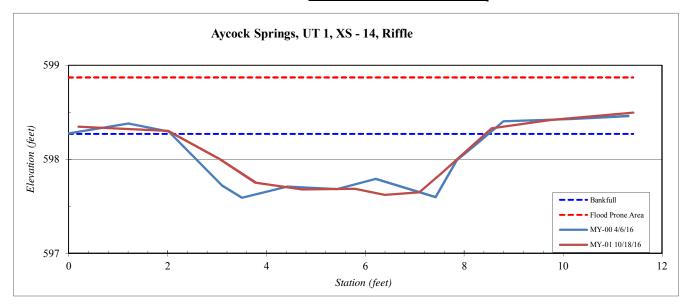
_	
Stream Type	C/E


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 1, XS - 13, Pool
Feature	Pool
Date:	10/18/2016
Field Crew:	Perkinson, Keith

598.2
598.2
597.8
597.8
597.7
597.6
597.2
597.0
596.9
596.9
596.9
597.4
597.8
598.1
598.0

SUMMARY DATA	
Bankfull Elevation:	598.1
Bankfull Cross-Sectional Area:	4.3
Bankfull Width:	8.0
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.2
Mean Depth at Bankfull:	0.5
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

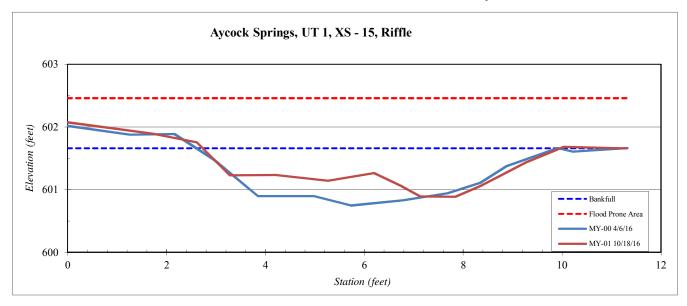
Stream Type	C/E
-------------	-----


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 1, XS - 14, Riffle
Feature	Riffle
Date:	10/18/2016
Field Crew:	Perkinson, Keith

Station	Elevation
0.2	598.35
2.0	598.30
3.1	598.00
3.8	597.75
4.7	597.68
5.8	597.69
6.4	597.62
7.1	597.65
7.5	597.85
8.6	598.33
9.7	598.42
11.4	598.50

SUMMARY DATA	
Bankfull Elevation:	598.3
Bankfull Cross-Sectional Area:	2.8
Bankfull Width:	6.3
Flood Prone Area Elevation:	598.9
Flood Prone Width:	90.0
Max Depth at Bankfull:	0.6
Mean Depth at Bankfull:	0.4
W / D Ratio:	14.2
Entrenchment Ratio:	14.3
Bank Height Ratio:	1.0

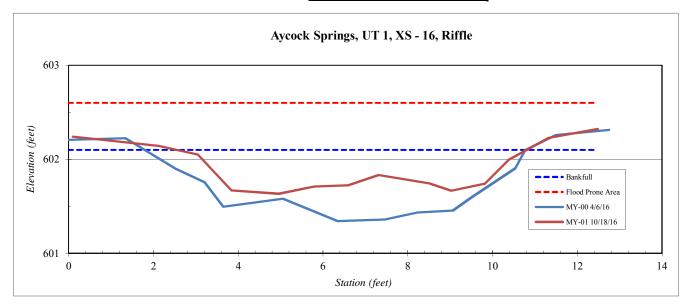
Stream Type C/E


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 1, XS - 15, Riffle
Feature	Riffle
Date:	10/18/2016
Field Crew:	Perkinson, Keith

~ · ·•	T71 .1
Station	Elevation
0.0	602.07
1.7	601.89
2.6	601.76
3.3	601.23
4.2	601.23
5.3	601.14
6.2	601.27
6.7	601.06
7.1	600.89
7.8	600.89
8.4	601.06
9.3	601.44
10.0	601.68
11.3	601.66

SUMMARY DATA	
Bankfull Elevation:	601.7
Bankfull Cross-Sectional Area:	3.3
Bankfull Width:	7.2
Flood Prone Area Elevation:	602.5
Flood Prone Width:	90.0
Max Depth at Bankfull:	0.8
Mean Depth at Bankfull:	0.5
W / D Ratio:	15.7
Entrenchment Ratio:	12.5
Bank Height Ratio:	1.0

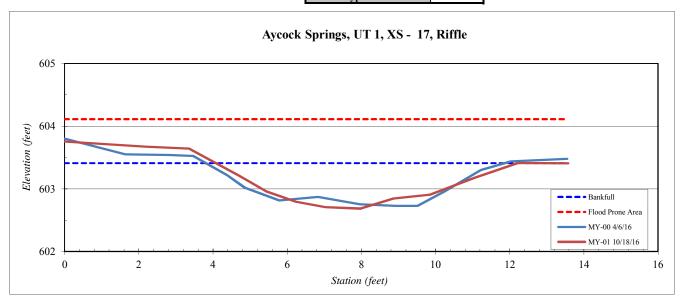
Stream Type	C/E


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 1, XS - 16, Riffle
Feature	Riffle
Date:	10/18/2016
Field Crew:	Perkinson, Keith

Station	Elevation
0.1	602.24
2.1	602.14
3.1	602.05
3.8	601.67
5.0	601.63
5.8	601.71
6.6	601.72
7.3	601.83
8.5	601.74
9.0	601.67
9.8	601.74
10.4	602.00
11.3	602.23
12.5	602.32

SUMMARY DATA	
Bankfull Elevation:	602.1
Bankfull Cross-Sectional Area:	2.6
Bankfull Width:	8.3
Flood Prone Area Elevation:	602.6
Flood Prone Width:	90.0
Max Depth at Bankfull:	0.5
Mean Depth at Bankfull:	0.3
W / D Ratio:	26.5
Entrenchment Ratio:	10.8
Bank Height Ratio:	1.0

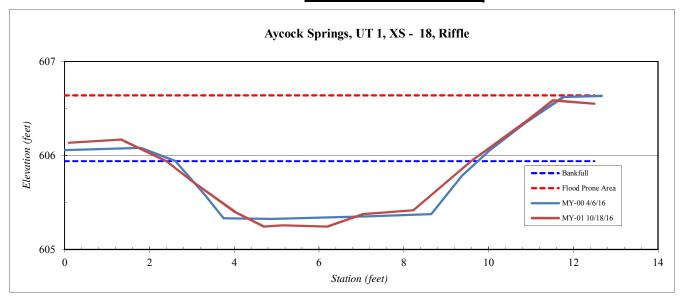
Stream Type C/E


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 1, XS - 17, Riffle
Feature	Riffle
Date:	10/18/2016
Field Crew:	Perkinson, Keith

11010 010111	
Station	Elevation
0.0	603.75
2.2	603.67
3.4	603.64
4.7	603.21
5.4	602.96
6.2	602.80
7.0	602.71
8.0	602.69
8.9	602.84
9.9	602.90
11.1	603.18
12.2	603.41
13.6	603.41

SUMMARY DATA	
Bankfull Elevation:	603.4
Bankfull Cross-Sectional Area:	3.6
Bankfull Width:	8.1
Flood Prone Area Elevation:	604.1
Flood Prone Width:	90.0
Max Depth at Bankfull:	0.7
Mean Depth at Bankfull:	0.4
W / D Ratio:	18.2
Entrenchment Ratio:	11.1
Bank Height Ratio:	1.0

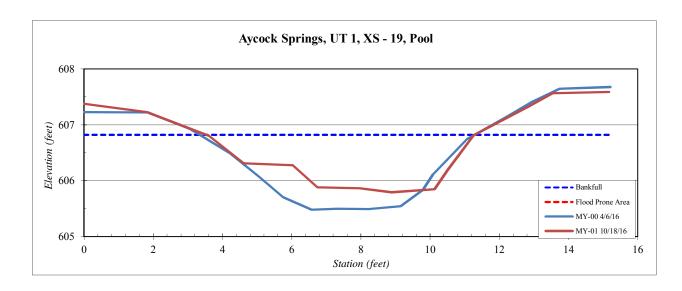
Stream Type C/E


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 1, XS - 18, Riffle
Feature	Riffle
Date:	10/18/2016
Field Crew:	Perkinson, Keith

Station	Elevation
0.1	606.14
1.3	606.17
2.4	605.94
3.0	605.73
4.0	605.40
4.7	605.24
5.1	605.26
6.2	605.24
7.0	605.38
8.2	605.42
9.6	605.94
10.9	606.38
11.5	606.59
12.5	606.55

SUMMARY DATA	
Bankfull Elevation:	605.9
Bankfull Cross-Sectional Area:	3.4
Bankfull Width:	7.2
Flood Prone Area Elevation:	606.6
Flood Prone Width:	90.0
Max Depth at Bankfull:	0.7
Mean Depth at Bankfull:	0.5
W / D Ratio:	15.2
Entrenchment Ratio:	12.5
Bank Height Ratio:	1.0

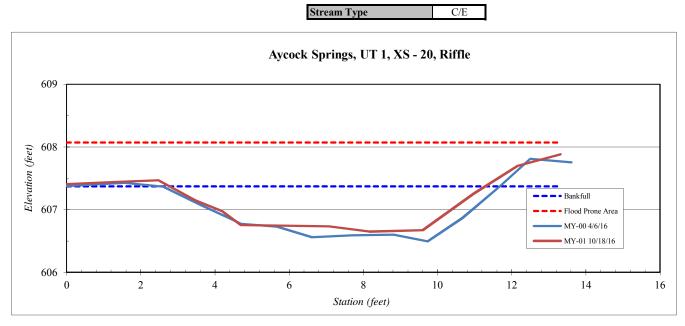
Stream Type	C/E
-------------	-----


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 1, XS - 19, Pool
Feature	Pool
Date:	10/18/2016
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	607.4
1.8	607.2
3.6	606.8
4.6	606.3
6.0	606.3
6.7	605.9
8.0	605.9
8.9	605.8
10.1	605.8
10.5	606.2
11.3	606.8
12.9	607.3
13.5	607.6
15.2	607.6

SUMMARY DATA	
Bankfull Elevation:	606.8
Bankfull Cross-Sectional Area:	5.4
Bankfull Width:	7.7
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.0
Mean Depth at Bankfull:	0.7
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

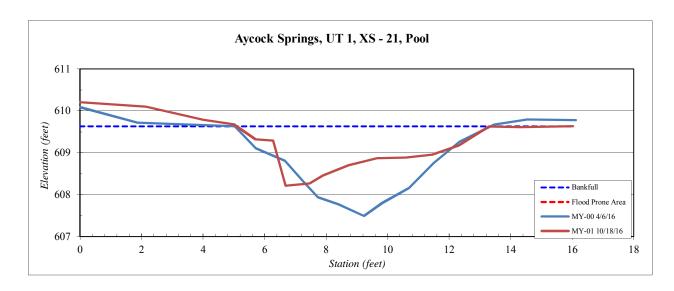
Stream Type	C/E
-------------	-----


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 1, XS - 20, Riffle
Feature	Riffle
Date:	10/18/2016
Field Crew:	Perkinson, Keith

Elevation
607.41
607.44
607.47
607.15
606.98
606.75
606.75
606.74
606.65
606.67
607.25
607.70
607.88

SUMMARY DATA	
Bankfull Elevation:	607.4
Bankfull Cross-Sectional Area:	4.4
Bankfull Width:	8.5
Flood Prone Area Elevation:	608.1
Flood Prone Width:	90.0
Max Depth at Bankfull:	0.7
Mean Depth at Bankfull:	0.5
W / D Ratio:	16.4
Entrenchment Ratio:	10.6
Bank Height Ratio:	1.0

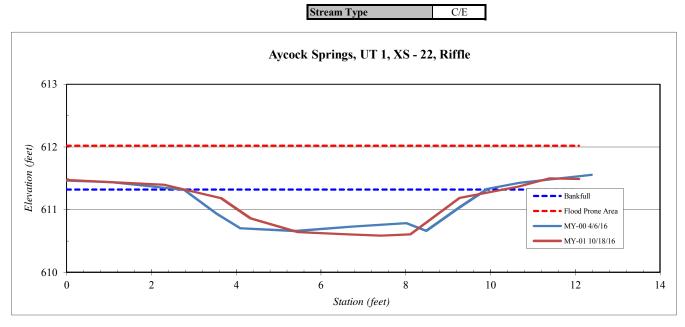
Stream Type C/E


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 1, XS - 21, Pool
Feature	Pool
Date:	10/18/2016
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	610.2
2.2	610.1
4.0	609.8
5.0	609.7
5.7	609.3
6.3	609.3
6.7	608.2
7.5	608.3
7.9	608.5
8.7	608.7
9.7	608.9
10.6	608.9
11.4	609.0
12.3	609.2
13.3	609.6
14.3	609.6
16.0	609.6

SUMMARY DATA	
Bankfull Elevation:	609.6
Bankfull Cross-Sectional Area:	5.9
Bankfull Width:	8.2
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.4
Mean Depth at Bankfull:	0.7
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

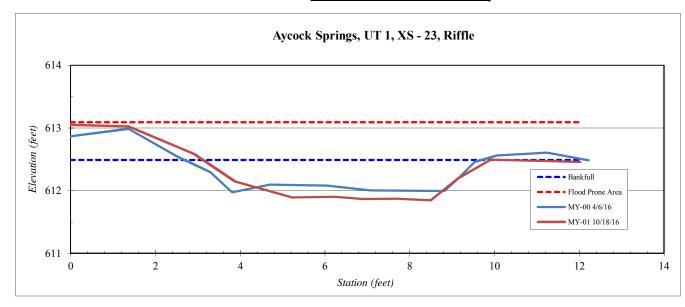
Stream Type	C/E
-------------	-----


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 1, XS - 22, Riffle
Feature	Riffle
Date:	10/18/2016
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	611.47
2.3	611.40
3.6	611.18
4.3	610.86
5.5	610.64
6.6	610.61
7.4	610.59
8.1	610.61
9.3	611.19
10.7	611.37
11.4	611.50
12.1	611.49

SUMMARY DATA	
Bankfull Elevation:	611.3
Bankfull Cross-Sectional Area:	3.4
Bankfull Width:	7.5
Flood Prone Area Elevation:	612.0
Flood Prone Width:	90.0
Max Depth at Bankfull:	0.7
Mean Depth at Bankfull:	0.5
W / D Ratio:	16.5
Entrenchment Ratio:	12.0
Bank Height Ratio:	1.0

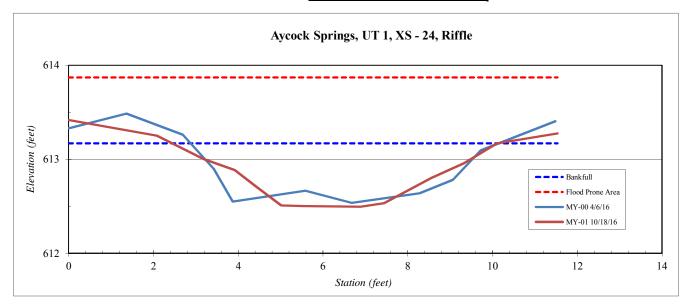
Stream Type	C/E
-------------	-----


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 1, XS - 23, Riffle
Feature	Riffle
Date:	10/18/2016
Field Crew:	Perkinson, Keith

Station	Elevation
-0.5	613.06
1.4	613.02
2.9	612.59
3.9	612.15
5.2	611.89
6.2	611.90
6.9	611.87
7.7	611.87
8.5	611.84
9.1	612.19
9.9	612.49
10.8	612.48
12.0	612.46

SUMMARY DATA	
Bankfull Elevation:	612.5
Bankfull Cross-Sectional Area:	3.2
Bankfull Width:	6.8
Flood Prone Area Elevation:	613.1
Flood Prone Width:	90.0
Max Depth at Bankfull:	0.6
Mean Depth at Bankfull:	0.5
W / D Ratio:	14.5
Entrenchment Ratio:	13.2
Bank Height Ratio:	1.0

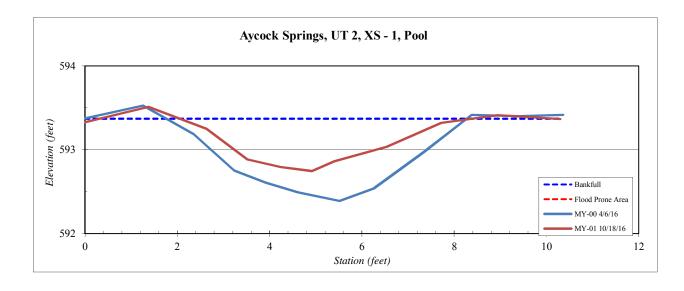
Stream Type	C/E
-------------	-----


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 1, XS - 24, Riffle
Feature	Riffle
Date:	10/18/2016
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	613.42
2.1	613.25
3.2	613.00
3.9	612.89
4.4	612.70
5.0	612.51
5.5	612.50
6.9	612.50
7.4	612.53
8.6	612.80
9.3	612.96
10.1	613.17
11.5	613.27

SUMMARY DATA	
Bankfull Elevation:	613.2
Bankfull Cross-Sectional Area:	3.2
Bankfull Width:	7.7
Flood Prone Area Elevation:	613.9
Flood Prone Width:	90.0
Max Depth at Bankfull:	0.7
Mean Depth at Bankfull:	0.4
W/D Ratio:	18.5
Entrenchment Ratio:	11.7
Bank Height Ratio:	1.0

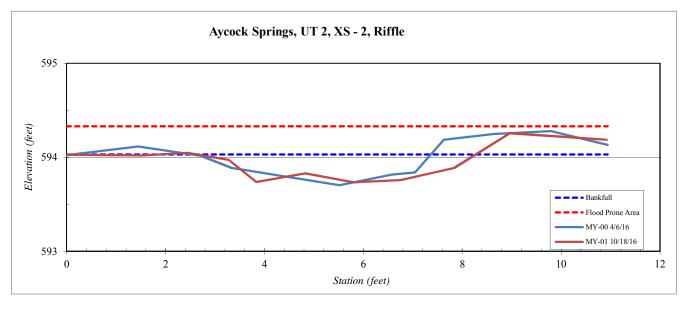
Stream Type	C/E
-------------	-----


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 2, XS - 1, Pool
Feature	Pool
Date:	10/18/2016
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	593.3
1.4	593.5
2.6	593.3
3.5	592.9
4.2	592.8
4.9	592.7
5.4	592.9
6.5	593.0
7.7	593.3
8.9	593.4
10.3	593.4

SUMMARY DATA	
Bankfull Elevation:	593.4
Bankfull Cross-Sectional Area:	2.1
Bankfull Width:	6.3
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	0.6
Mean Depth at Bankfull:	0.3
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

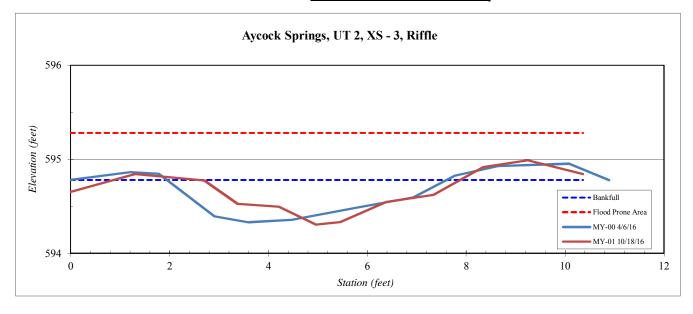
Stream Type	C/E
-------------	-----



Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 2, XS - 2, Riffle
Feature	Riffle
Date:	10/18/2016
Field Crew:	Perkinson, Keith

Elevation
594.03
594.02
594.05
593.97
593.74
593.83
593.73
593.76
593.89
594.26
594.19

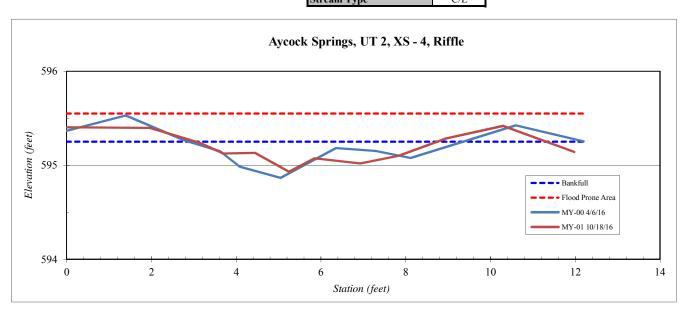
E	
SUMMARY DATA	
Bankfull Elevation:	594.0
Bankfull Cross-Sectional Area:	1.1
Bankfull Width:	5.6
Flood Prone Area Elevation:	594.3
Flood Prone Width:	90.0
Max Depth at Bankfull:	0.3
Mean Depth at Bankfull:	0.2
W / D Ratio:	28.5
Entrenchment Ratio:	16.1
Bank Height Ratio:	1.0


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 2, XS - 3, Riffle
Feature	Riffle
Date:	10/18/2016
Field Crew:	Perkinson, Keith

Station	Elevation
-0.1	594.64
1.3	594.84
2.7	594.77
3.4	594.53
4.2	594.50
5.0	594.30
5.5	594.33
6.4	594.55
7.3	594.62
8.3	594.92
9.2	594.99
10.4	594.84

SUMMARY DATA	
Bankfull Elevation:	594.8
Bankfull Cross-Sectional Area:	1.4
Bankfull Width:	5.3
Flood Prone Area Elevation:	595.3
Flood Prone Width:	90.0
Max Depth at Bankfull:	0.5
Mean Depth at Bankfull:	0.3
W / D Ratio:	20.1
Entrenchment Ratio:	17.0
Bank Height Ratio:	1.0

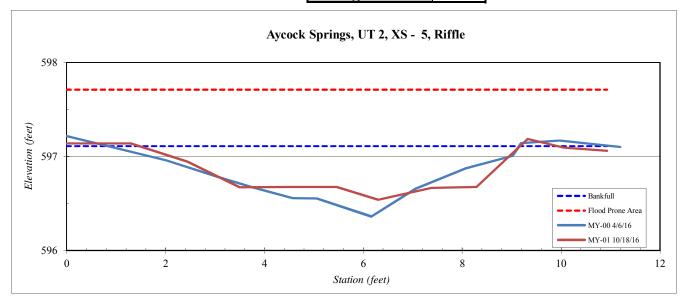
Stream Type	C/E
-------------	-----


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 2, XS - 4, Riffle
Feature	Riffle
Date:	10/18/2016
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	595.40
2.0	595.40
3.1	595.24
3.7	595.13
4.4	595.13
5.2	594.93
5.8	595.07
6.9	595.02
7.8	595.10
9.0	595.29
10.3	595.42
12.0	595.14

SUMMARY DATA	•
Bankfull Elevation:	595.3
Bankfull Cross-Sectional Area:	0.9
Bankfull Width:	5.7
Flood Prone Area Elevation:	595.6
Flood Prone Width:	90.0
Max Depth at Bankfull:	0.3
Mean Depth at Bankfull:	0.2
W / D Ratio:	36.1
Entrenchment Ratio:	15.8
Bank Height Ratio:	1.0

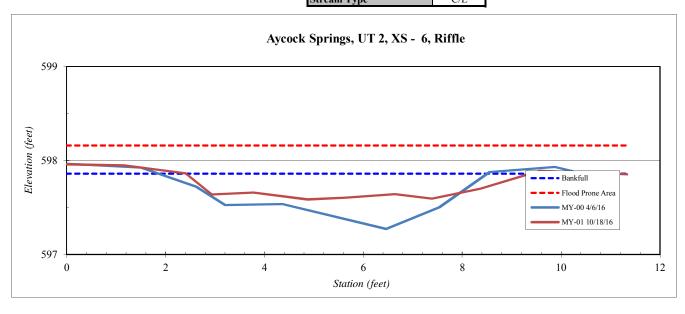
Stream Type C/E


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 2, XS - 5, Riffle
Feature	Riffle
Date:	10/18/2016
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	597.14
1.3	597.14
2.4	596.94
3.5	596.67
4.5	596.68
5.5	596.68
6.3	596.54
7.4	596.67
8.3	596.68
9.3	597.19
10.0	597.09
10.9	597.06

SUMMARY DATA	
Bankfull Elevation:	597.1
Bankfull Cross-Sectional Area:	2.8
Bankfull Width:	7.7
Flood Prone Area Elevation:	597.7
Flood Prone Width:	90.0
Max Depth at Bankfull:	0.6
Mean Depth at Bankfull:	0.4
W / D Ratio:	21.2
Entrenchment Ratio:	11.7
Bank Height Ratio:	1.0

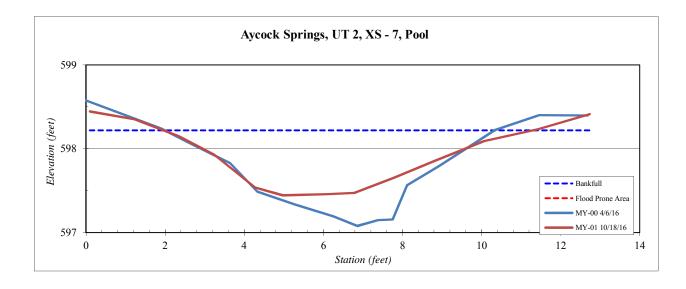
Stroam Tyno	0.75	G. Th
Stream Type	C/E	Stream Type



Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 2, XS - 6, Riffle
Feature	Riffle
Date:	10/18/2016
Field Crew:	Perkinson, Keith

Elevation
597.96
597.95
597.86
597.64
597.66
597.59
597.61
597.64
597.59
597.70
597.89
597.85

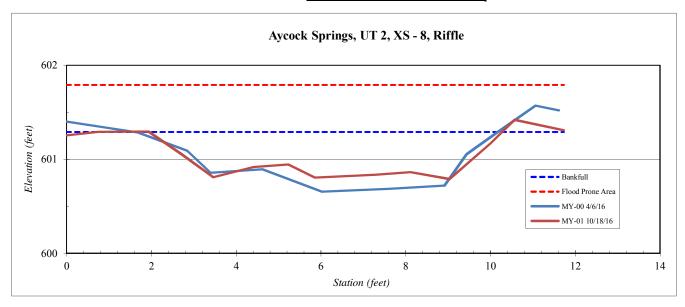
SUMMARY DATA	
Bankfull Elevation:	597.9
Bankfull Cross-Sectional Area:	1.4
Bankfull Width:	7.0
Flood Prone Area Elevation:	598.2
Flood Prone Width:	90.0
Max Depth at Bankfull:	0.3
Mean Depth at Bankfull:	0.2
W / D Ratio:	35.0
Entrenchment Ratio:	12.9
Bank Height Ratio:	1.0


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 2, XS - 7, Pool
Feature	Pool
Date:	10/18/2016
Field Crew:	Perkinson, Keith

Station	Elevation
0.1	598.4
1.2	598.4
2.3	598.1
3.2	597.9
4.3	597.5
5.0	597.4
6.1	597.5
6.8	597.5
7.8	597.7
8.8	597.9
10.1	598.1
11.4	598.2
12.7	598.4
I	

SUMMARY DATA	
	500.0
Bankfull Elevation:	598.2
Bankfull Cross-Sectional Area:	4.1
Bankfull Width:	9.4
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	0.8
Mean Depth at Bankfull:	0.4
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

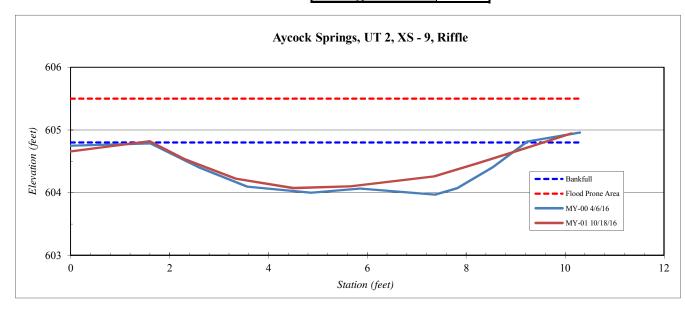
Stream Type	C/E
-------------	-----


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 2, XS - 8, Riffle
Feature	Riffle
Date:	10/18/2016
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	601.25
0.8	601.29
1.9	601.29
2.7	601.05
3.5	600.81
4.4	600.92
5.2	600.95
5.9	600.80
7.3	600.84
8.1	600.86
9.0	600.79
10.0	601.17
10.6	601.42
11.7	601.31

SUMMARY DATA	
Bankfull Elevation:	601.3
Bankfull Cross-Sectional Area:	3.1
Bankfull Width:	8.3
Flood Prone Area Elevation:	601.8
Flood Prone Width:	90.0
Max Depth at Bankfull:	0.5
Mean Depth at Bankfull:	0.4
W / D Ratio:	22.2
Entrenchment Ratio:	10.8
Bank Height Ratio:	1.0

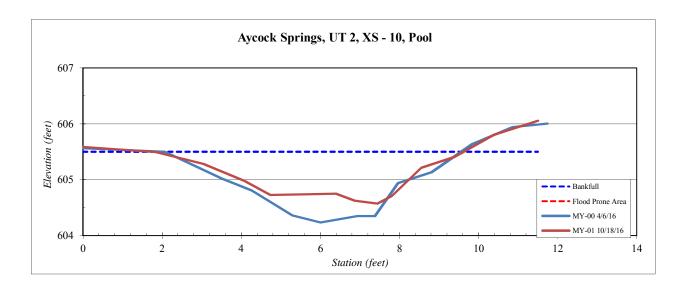
Stream Type	C/E
-------------	-----



Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 2, XS - 9, Riffle
Feature	Riffle
Date:	10/18/2016
Field Crew:	Perkinson, Keith

Station	Elevation
-0.2	604.64
1.6	604.82
2.3	604.54
3.3	604.23
4.5	604.07
5.7	604.10
7.3	604.26
8.2	604.47
9.0	604.66
10.1	604.94

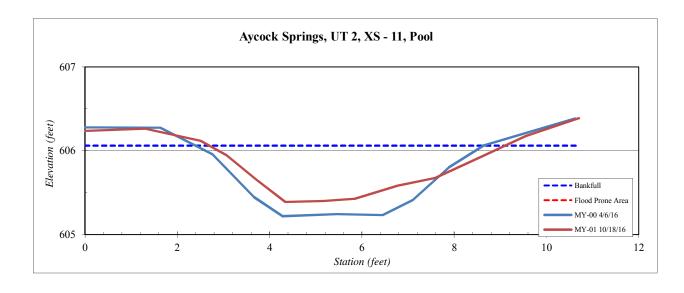
SUMMARY DATA	
Bankfull Elevation:	604.8
Bankfull Cross-Sectional Area:	3.8
Bankfull Width:	7.9
Flood Prone Area Elevation:	605.5
Flood Prone Width:	90.0
Max Depth at Bankfull:	0.7
Mean Depth at Bankfull:	0.5
W / D Ratio:	16.4
Entrenchment Ratio:	11.4
Bank Height Ratio:	1.0


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 2, XS - 10, Pool
Feature	Pool
Date:	10/18/2016
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	605.6
1.8	605.5
3.0	605.3
4.1	605.0
4.7	604.7
5.6	604.7
6.4	604.8
6.9	604.6
7.4	604.6
7.8	604.7
8.6	605.2
9.4	605.4
10.4	605.8
11.5	606.1
I	I

SUMMARY DATA	
Bankfull Elevation:	605.5
Bankfull Cross-Sectional Area:	4.0
Bankfull Width:	7.8
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	0.9
Mean Depth at Bankfull:	0.5
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

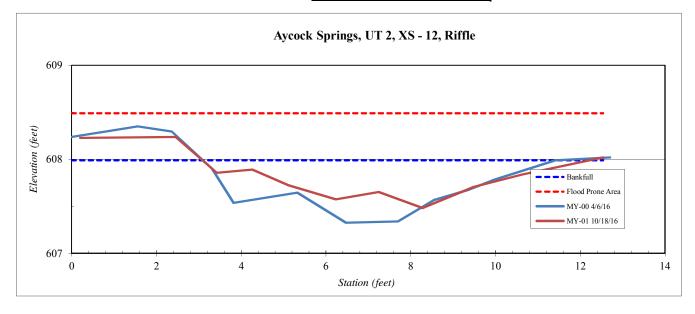
Stream Type	C/E


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 2, XS - 11, Pool
Feature	Pool
Date:	10/18/2016
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	606.2
1.3	606.3
2.5	606.1
3.1	605.9
3.7	605.7
4.3	605.4
5.2	605.4
5.8	605.4
6.8	605.6
7.6	605.7
8.6	605.9
9.5	606.2
10.7	606.4

SUMMARY DATA	
Bankfull Elevation:	606.1
Bankfull Cross-Sectional Area:	2.7
Bankfull Width:	6.4
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	0.7
Mean Depth at Bankfull:	0.4
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

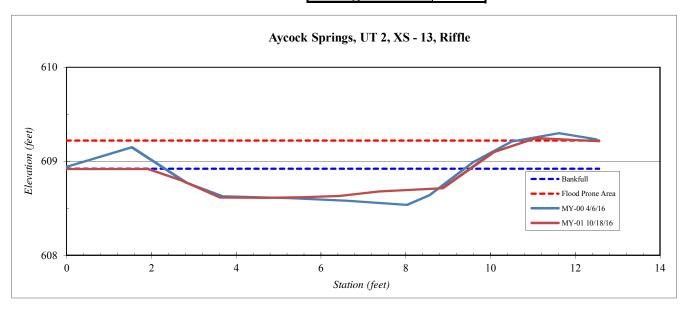
Stream Type	C/E
-------------	-----


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 2, XS - 12, Riffle
Feature	Riffle
Date:	10/18/2016
Field Crew:	Perkinson, Keith

Station	Elevation
0.2	608.23
2.5	608.24
3.4	607.86
4.3	607.89
5.1	607.72
6.2	607.57
7.2	607.65
8.3	607.48
9.5	607.71
10.6	607.84
12.5	608.02
	

SUMMARY DATA	
Bankfull Elevation:	608.0
Bankfull Cross-Sectional Area:	2.3
Bankfull Width:	9.2
Flood Prone Area Elevation:	608.5
Flood Prone Width:	90.0
Max Depth at Bankfull:	0.5
Mean Depth at Bankfull:	0.3
W / D Ratio:	36.8
Entrenchment Ratio:	9.8
Bank Height Ratio:	1.0

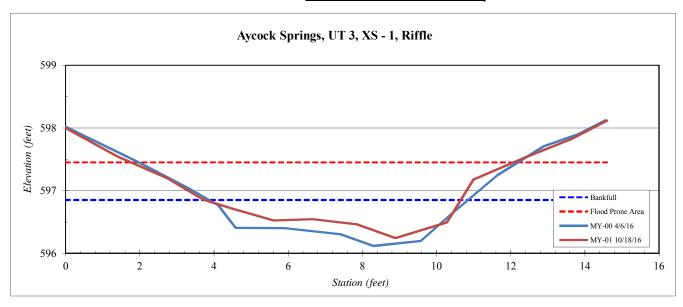
Stream Type C/E


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 2, XS - 13, Riffle
Feature	Riffle
Date:	10/18/2016
Field Crew:	Perkinson, Keith

Station	Elevation
-0.1	608.92
1.9	608.92
2.7	608.80
3.6	608.62
4.7	608.61
5.6	608.62
6.4	608.63
7.4	608.68
8.9	608.71
10.1	609.10
11.1	609.25
12.6	609.21

SUMMARY DATA	
Bankfull Elevation:	608.9
Bankfull Cross-Sectional Area:	1.7
Bankfull Width:	7.6
Flood Prone Area Elevation:	609.2
Flood Prone Width:	90.0
Max Depth at Bankfull:	0.3
Mean Depth at Bankfull:	0.2
W / D Ratio:	34.0
Entrenchment Ratio:	11.8
Bank Height Ratio:	1.0

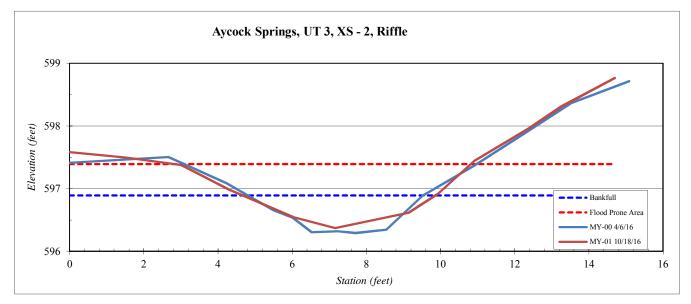
Stream Type C/E


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 3, XS - 1, Riffle
Feature	Riffle
Date:	10/18/2016
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	598.00
1.4	597.55
2.7	597.20
2.7 3.7	596.85
4.5	596.72
5.6	596.52
6.7	596.55
7.9	596.46
8.9	596.24
10.3	596.49
11.0	597.18
12.4	597.53
13.7	597.82
14.6	598.12

SUMMARY DATA	
Bankfull Elevation:	596.9
Bankfull Cross-Sectional Area:	2.3
Bankfull Width:	6.9
Flood Prone Area Elevation:	597.5
Flood Prone Width:	11.0
Max Depth at Bankfull:	0.6
Mean Depth at Bankfull:	0.3
W / D Ratio:	20.7
Entrenchment Ratio:	1.6
Bank Height Ratio:	1.0

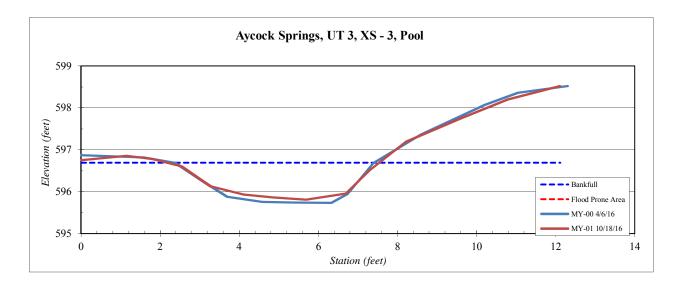
Stream Type C/E


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 3, XS - 2, Riffle
Feature	Riffle
Date:	10/18/2016
Field Crew:	Perkinson, Keith

Station	Elevation
-0.2	597.59
1.5	597.50
3.0	597.38
4.3	596.98
6.0	596.55
7.2	596.37
9.1	596.62
9.9	596.91
10.9	597.44
12.4	597.96
13.3	598.31
14.7	598.77

SUMMARY DATA	
Bankfull Elevation:	596.9
Bankfull Cross-Sectional Area:	1.6
Bankfull Width:	5.2
Flood Prone Area Elevation:	597.4
Flood Prone Width:	8.0
Max Depth at Bankfull:	0.5
Mean Depth at Bankfull:	0.3
W / D Ratio:	16.9
Entrenchment Ratio:	1.5
Bank Height Ratio:	1.0

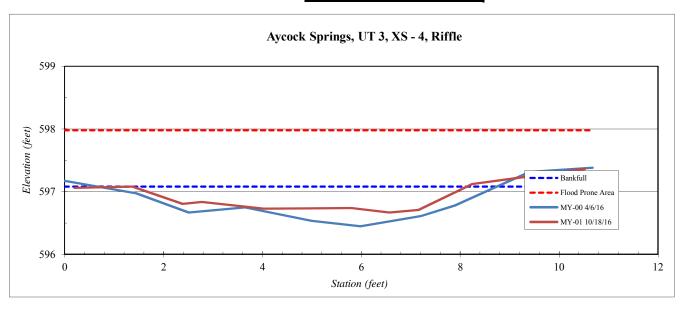
Stream Type	C/E


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 3, XS - 3, Pool
Feature	Pool
Date:	10/18/2016
Field Crew:	Perkinson, Keith

Station	Elevation
-0.2	596.7
1.1	596.9
1.8	596.8
2.5	596.6
3.3	596.1
4.1	595.9
4.9	595.9
5.7	595.8
6.7	596.0
7.3	596.5
8.2	597.2
9.6	597.8
10.8	598.2
12.1	598.5

SUMMARY DATA	
Bankfull Elevation:	596.7
Bankfull Cross-Sectional Area:	3.2
Bankfull Width:	5.4
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	0.9
Mean Depth at Bankfull:	0.6
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

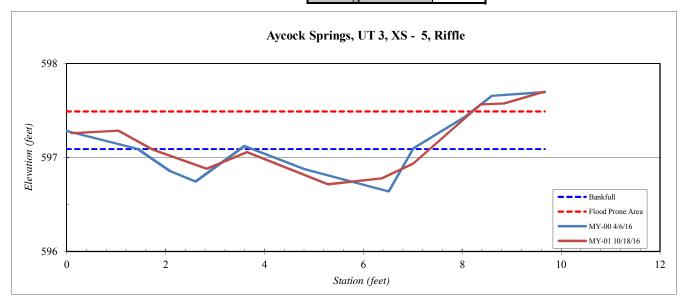
Stream Type	C/E
-------------	-----


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 3, XS - 4, Riffle
Feature	Riffle
Date:	10/18/2016
Field Crew:	Perkinson, Keith

ricia erem.		
Station	Elevation	
0.2	597.06	
1.4	597.08	
2.4	596.80	
2.8	596.84	
4.0	596.73	
5.0	596.73	
5.8	596.74	
6.6	596.67	
7.2	596.71	
8.2	597.12	
10.5	597.36	

SUMMARY DATA	
Bankfull Elevation:	597.1
Bankfull Cross-Sectional Area:	3.2
Bankfull Width:	5.4
Flood Prone Area Elevation:	598.0
Flood Prone Width:	20.0
Max Depth at Bankfull:	0.9
Mean Depth at Bankfull:	0.6
W / D Ratio:	9.1
Entrenchment Ratio:	3.7
Bank Height Ratio:	1.0

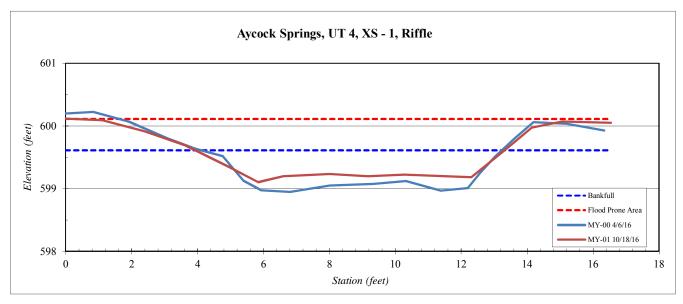
Stream Type C/E


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 3, XS - 5, Riffle
Feature	Riffle
Date:	10/18/2016
Field Crew:	Perkinson, Keith

Station	Elevation
0.1	597.26
1.0	597.29
1.7	597.08
2.8	596.88
3.6	597.06
5.3	596.71
6.4	596.78
7.0	596.93
8.4	597.56
8.8	597.57
9.7	597.70

SUMMARY DATA	
Bankfull Elevation:	597.1
Bankfull Cross-Sectional Area:	1.1
Bankfull Width:	5.6
Flood Prone Area Elevation:	597.5
Flood Prone Width:	20.0
Max Depth at Bankfull:	0.4
Mean Depth at Bankfull:	0.2
W / D Ratio:	28.5
Entrenchment Ratio:	3.6
Bank Height Ratio:	1.0

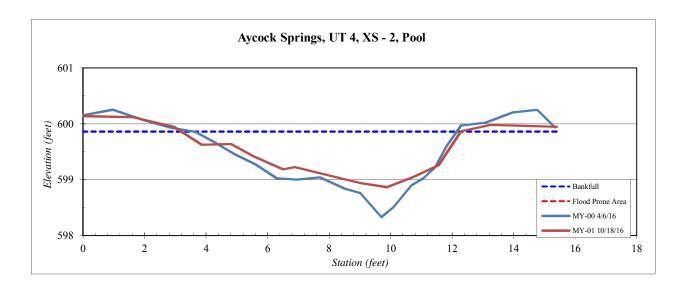
Stream Type	C/E
-------------	-----


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 4, XS - 1, Riffle
Feature	Riffle
Date:	10/18/2016
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	600.12
1.1	600.09
2.4	599.92
3.6	599.69
4.9	599.35
5.8	599.10
6.6	599.20
8.0	599.23
9.2	599.20
10.3	599.22
11.5	599.20
12.3	599.18
13.3	599.61
14.1	599.97
15.1	600.07
16.5	600.05

SUMMARY DATA	
Bankfull Elevation:	599.6
Bankfull Cross-Sectional Area:	3.3
Bankfull Width:	9.4
Flood Prone Area Elevation:	600.1
Flood Prone Width:	50.0
Max Depth at Bankfull:	0.5
Mean Depth at Bankfull:	0.4
W / D Ratio:	26.8
Entrenchment Ratio:	5.3
Bank Height Ratio:	1.0

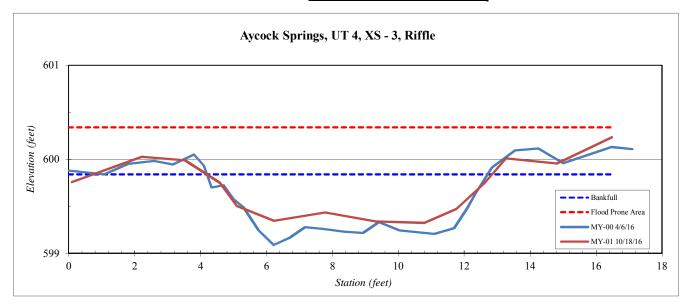
Stream Type	C/E


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 4, XS - 2, Pool
Feature	Pool
Date:	10/18/2016
Field Crew:	Perkinson, Keith

64-4:	Fl4:
Station	Elevation
0.0	600.1
1.6	600.1
3.0	599.9
3.9	599.6
4.8	599.6
5.5	599.4
6.5	599.2
6.9	599.2
7.9	599.1
9.0	598.9
9.9	598.9
10.8	599.1
11.6	599.3
12.3	599.9
13.3	600.0
15.4	599.9

SUMMARY DATA	
Bankfull Elevation:	599.9
Bankfull Cross-Sectional Area:	5.4
Bankfull Width:	9.1
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.0
Mean Depth at Bankfull:	0.6
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

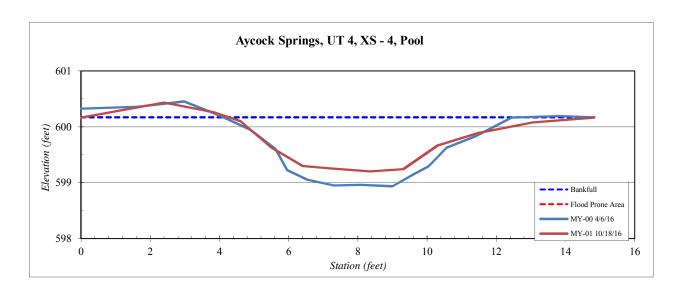
Stream Type C/E	
-----------------	--


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 4, XS - 3, Riffle
Feature	Riffle
Date:	10/18/2016
Field Crew:	Perkinson, Keith

Station	Elevation
0.1	599.76
2.2	600.03
3.5	599.99
4.6	599.75
5.1	599.50
6.2	599.35
7.8	599.43
9.3	599.34
10.8	599.32
11.8	599.47
12.6	599.75
13.3	600.01
14.8	599.95
16.5	600.23
	1

SUMMARY DATA	
Bankfull Elevation:	599.8
Bankfull Cross-Sectional Area:	3.4
Bankfull Width:	8.7
Flood Prone Area Elevation:	600.3
Flood Prone Width:	50.0
Max Depth at Bankfull:	0.5
Mean Depth at Bankfull:	0.4
W / D Ratio:	22.3
Entrenchment Ratio:	5.7
Bank Height Ratio:	1.0

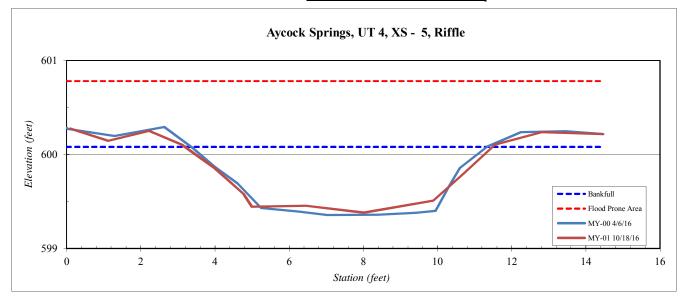
Stream Type C/E


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 4, XS - 4, Pool
Feature	Pool
Date:	10/18/2016
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	600.2
2.4	600.4
3.8	600.3
4.6	600.1
5.5	599.6
6.4	599.3
7.1	599.3
8.4	599.2
9.3	599.2
10.3	599.7
11.5	599.9
13.0	600.1
14.8	600.2

SUMMARY DATA	
Bankfull Elevation:	600.2
Bankfull Cross-Sectional Area:	5.2
Bankfull Width:	10.6
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.0
Mean Depth at Bankfull:	0.5
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

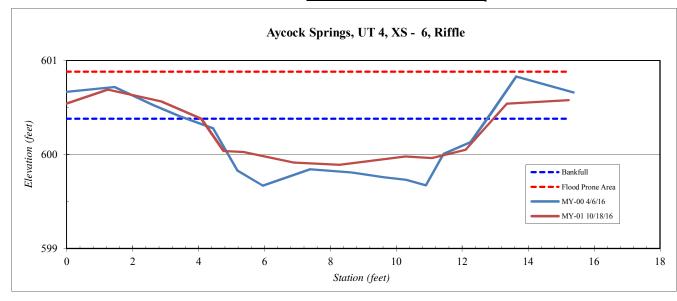
Stream Type	C/E
-------------	-----


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 4, XS - 5, Riffle
Feature	Riffle
Date:	10/18/2016
Field Crew:	Perkinson, Keith

Station	Elevation
0.1	600.28
1.1	600.15
2.2	600.25
3.1	600.10
4.0	599.86
4.8	599.58
5.0	599.44
6.5	599.46
8.0	599.38
9.9	599.51
10.7	599.79
11.6	600.11
12.8	600.24
14.4	600.22
Ī	

SUMMARY DATA	•
Bankfull Elevation:	600.1
Bankfull Cross-Sectional Area:	4.1
Bankfull Width:	8.3
Flood Prone Area Elevation:	600.8
Flood Prone Width:	50.0
Max Depth at Bankfull:	0.7
Mean Depth at Bankfull:	0.5
W / D Ratio:	16.8
Entrenchment Ratio:	6.0
Bank Height Ratio:	1.0

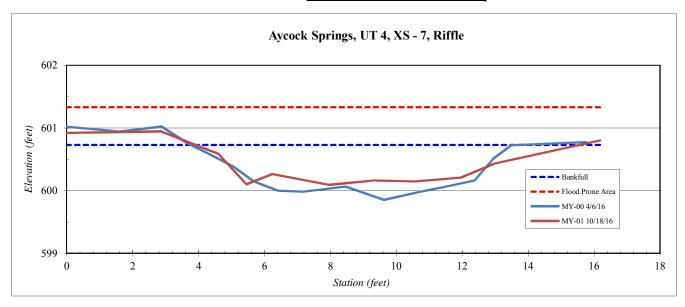
Stream Type	C/E
-------------	-----


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 4, XS - 6, Riffle
Feature	Riffle
Date:	10/18/2016
Field Crew:	Perkinson, Keith

Station	Elevation
-0.1	600.53
1.3	600.69
2.9	600.57
4.1	600.38
4.8	600.04
5.4	600.03
6.9	599.92
8.3	599.89
10.3	599.98
11.1	599.96
12.1	600.05
13.4	600.54
15.2	600.58

SUMMARY DATA	
Bankfull Elevation:	600.4
Bankfull Cross-Sectional Area:	3.3
Bankfull Width:	8.9
Flood Prone Area Elevation:	600.9
Flood Prone Width:	50.0
Max Depth at Bankfull:	0.5
Mean Depth at Bankfull:	0.4
W / D Ratio:	24.0
Entrenchment Ratio:	5.6
Bank Height Ratio:	1.0

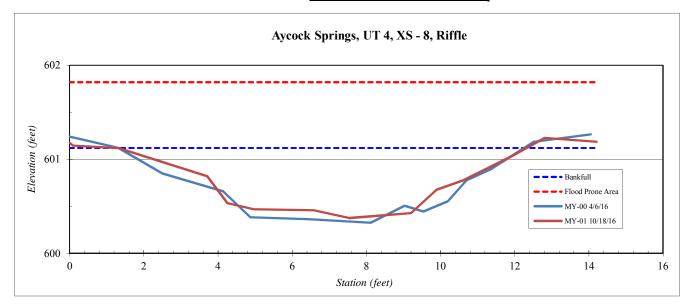
Stream Type	C/E
-------------	-----

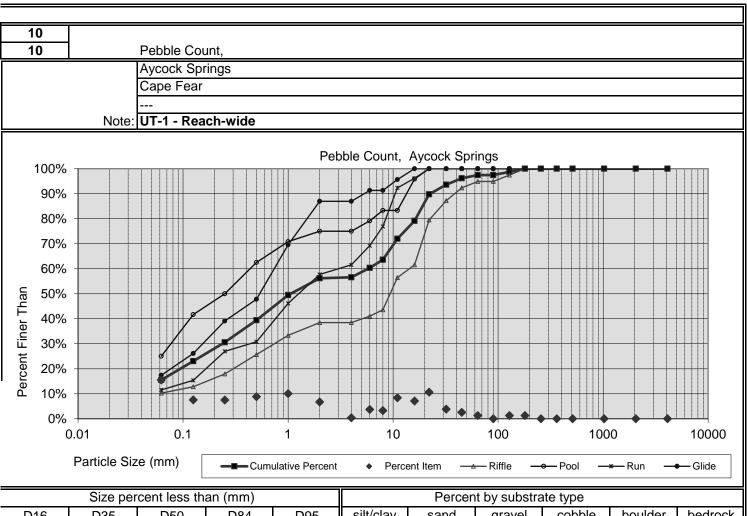


Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 4, XS - 7, Riffle
Feature	Riffle
Date:	10/18/2016
Field Crew:	Perkinson, Keith

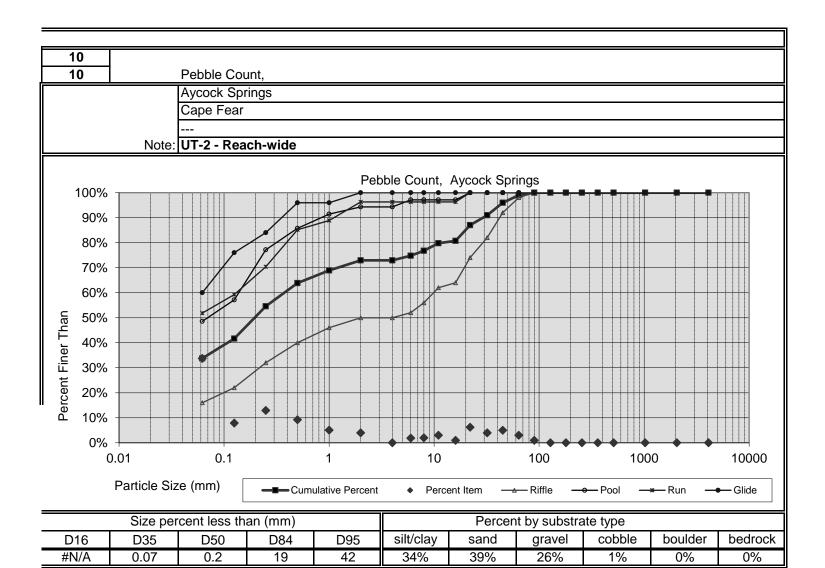
riciu Crew.	
Station	Elevation
16.2	600.80
13.0	600.43
12.0	600.21
10.6	600.15
9.3	600.16
8.0	600.09
6.2	600.26
5.5	600.10
4.6	600.59
2.9	600.95
-0.3	600.92
	1
	1
	1
	1
	1

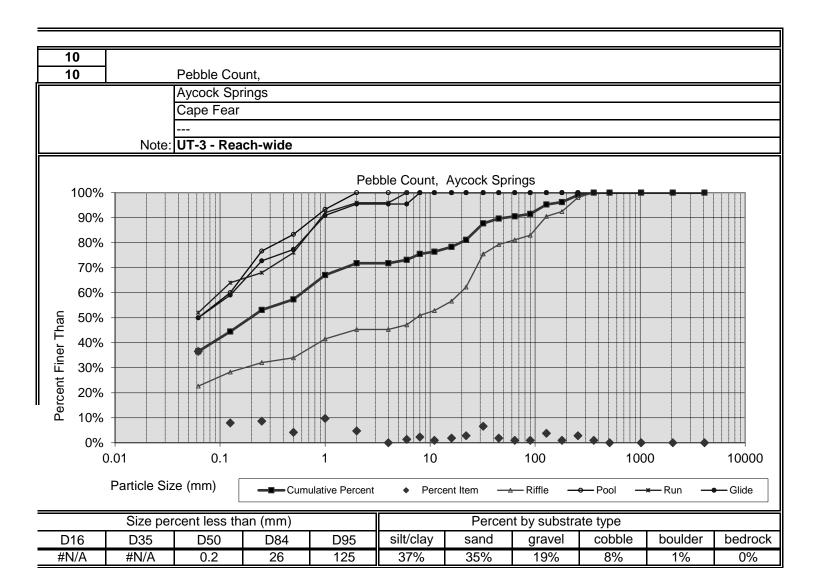
SUMMARY DATA	
Bankfull Elevation:	600.7
Bankfull Cross-Sectional Area:	4.9
Bankfull Width:	11.7
Flood Prone Area Elevation:	601.3
Flood Prone Width:	50.0
Max Depth at Bankfull:	0.6
Mean Depth at Bankfull:	0.4
W / D Ratio:	27.9
Entrenchment Ratio:	4.3
Bank Height Ratio:	1.0

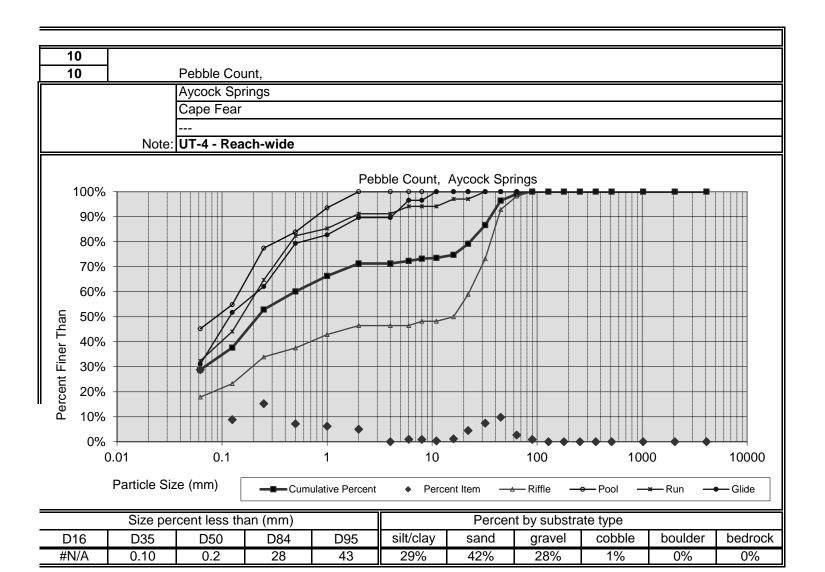

Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 4, XS - 8, Riffle
Feature	Riffle
Date:	10/18/2016
Field Crew:	Perkinson, Keith

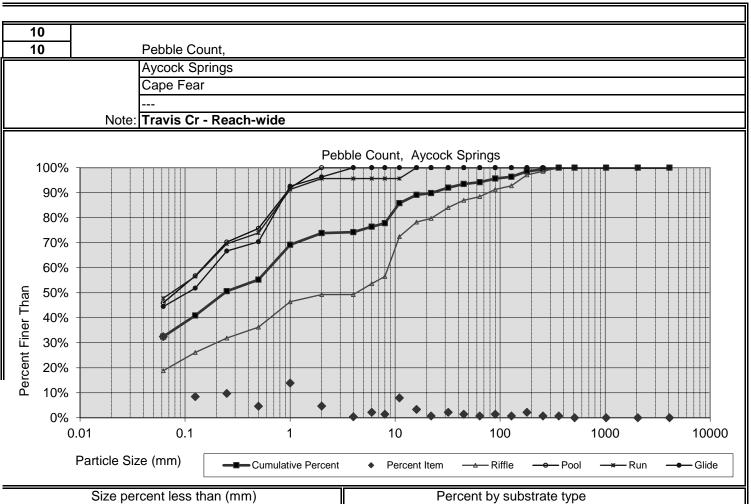

Station	Elevation
0.0	601.18
0.1	601.15
1.3	601.12
3.7	600.82
4.3	600.53
5.0	600.47
6.6	600.46
7.5	600.38
9.2	600.43
9.9	600.68
10.6	600.77
11.9	601.03
12.8	601.23
14.2	601.19

SUMMARY DATA	
Bankfull Elevation:	601.1
Bankfull Cross-Sectional Area:	4.9
Bankfull Width:	11.1
Flood Prone Area Elevation:	601.8
Flood Prone Width:	50.0
Max Depth at Bankfull:	0.7
Mean Depth at Bankfull:	0.4
W / D Ratio:	25.1
Entrenchment Ratio:	4.5
Bank Height Ratio:	1.0




Stream Type	C/E
-------------	-----





	Size per	cent less th	an (mm)			Percen	it by substra	ite type		
D16	D35	D50	D84	D95	silt/clay	sand	gravel	cobble	boulder	bedrock
0.065	0.35	1.1	19	39	16%	41%	41%	3%	0%	0%

	Size per		Percen	t by substra	ite type					
D16	D35	D50	D84	D95	silt/clay	sand	gravel	cobble	boulder	bedrock
#N/A	0.08	0.2	10	77	32%	41%	20%	5%	1%	0%

Table 10A. Baseline Morphology and Hydraulic Summary Aycock Springs UT 1

Parameter	USGS Gage	Data		e-Exist Conditio	_		ect Refe larock P			ect Refe ipple Cr			Design		As-built		
Dimension	Min Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
BF Width (ft)	USGS gage of		3.8	9.6	6.7	8	12.1	8.1	3	6.1	4.6	7.2	8.3	7.8	6.4	9.6	8.0
Floodprone Width (ft)	unavailable fe	or this	8	73	30	15	25	18	150	150	150	20	70	50			90
BF Cross Sectional Area (ft2)	project				4.3			8			5.9			4.3	3	6.6	3.9
BF Mean Depth (ft)			0.8	1	0.8	0.8	1	0.8	0.7	1.5	1.1	0.5	0.7	0.6	0.4	0.7	0.5
BF Max Depth (ft)			1.1	1.4	1.4	1.1	1.4	1.4	1	2.3	1.7	0.7	0.9	0.8	0.6	1.1	0.7
Width/Depth Ratio			8	15.1	10.1	8	15.1	10.1	4	4.3	4.2	12	16	14	11	19	15
Entrenchment Ratio			1.9	2.2	2.1	1.9	2.2	2.1	24.6	50	37.3	2.6	9	6.4	9	14	11.3
Bank Height Ratio			1	1.8	1	1	1.8	1	1	1.5	1.3	1	1.2	1			1
Wetted Perimeter(ft)					===			===			===			===			===
Hydraulic radius (ft)					===			===			===			===			===
Pattern																	
Channel Beltwidth (ft)				attern of		20	38	22.8	15.1	29.2	24.3	23	47	31	23	47	31
Radius of Curvature (ft)				pools d		11	27	16.5	8.9	19.4	13.2	14	31	23	14	31	23
Meander Wavelength (ft)			straigh	itening a	activties	44	116	68.4	31	74	47.8	47	94	66	47	94	66
Meander Width ratio						2.4	4.7	2.8	2.1	4	3.4	3	6	4	3	6	4
Profile																	
Riffle length (ft)				attern of				===			===			===	9	70	16
Riffle slope (ft/ft)				pools d		1.00%	5.76%	3.16%	0.00%	1.54%	0.83%	2.77%	6.47%	4.16%	0.01%	4.33%	2.23%
Pool length (ft)			straigh	itening a	activties			===			===			===	4	23	9
Pool spacing (ft)						25	69	37.2	14	39.6	32.4	23	62	31	23	62	31
Substrate																	
d50 (mm)					===			===			===			===			===
d84 (mm)					===			===			===			===			===
Additional Reach Parameters																	
Valley Length (ft)					===			===			===			===			===
Channel Length (ft)					===			===			===			===			===
Sinuosity					1.02			1.2			1.22			1.1			1.1
Water Surface Slope (ft/ft)					1.37% -			2.58%			0.50%			1.27% -			1.89%
					3.61%									3.35%			
BF slope (ft/ft)					===			===			===			===			===
Rosgen Classification					Cg			E			Е			E/C			E/C

Table 10B. Baseline Morphology and Hydraulic Summary Aycock Springs UT 2

Parameter	USGS Gage Data			Pre-Existing Condition			Project Reference Cedarock Park			Project Reference Cripple Creek			Design			As-built		
Dimension	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
BF Width (ft)	USG	S gage o	lata is	3.8	9.6	6.7	8	12.1	8.1	3	6.1	4.6	7.2	8.3	7.8	4.8	8.6	7.2
Floodprone Width (ft)	unava	ilable f	or this	8	73	30	15	25	18	150	150	150	20	70	50			90
BF Cross Sectional Area (ft2)		project				4.3			8			5.9			4.3	1	4.2	2.3
BF Mean Depth (ft)				8.0	1	0.8	0.8	1	0.8	0.7	1.5	1.1	0.5	0.7	0.6	0.2	0.6	0.3
BF Max Depth (ft)				1.1	1.4	1.4	1.1	1.4	1.4	1	2.3	1.7	0.7	0.9	0.8	0.3	0.8	0.6
Width/Depth Ratio				8	15.1	10.1	8	15.1	10.1	4	4.3	4.2	12	16	14	12	32	22
Entrenchment Ratio				1.9	2.2	2.1	1.9	2.2	2.1	24.6	50	37.3	2.6	9	6.4	11	19	13
Bank Height Ratio				1	1.8	1	1	1.8	1	1	1.5	1.3	1	1.2	1			1
Wetted Perimeter(ft)						===			===			===			===			===
Hydraulic radius (ft)						===			===			===			===			===
Pattern																		
Channel Beltwidth (ft)					attern o		20	38	22.8	15.1	29.2	24.3	23	47	31	23	47	31
Radius of Curvature (ft)					pools o		11	27	16.5	8.9	19.4	13.2	14	31	23	14	31	23
Meander Wavelength (ft)				straigh	tening	activties	44	116	68.4	31	74	47.8	47	94	66	47	94	66
Meander Width ratio							2.4	4.7	2.8	2.1	4	3.4	3	6	4	3	6	4
Profile																		
Riffle length (ft)					attern o				===			===			===	9	23	14
Riffle slope (ft/ft)					pools c		1.00%	5.76%	3.16%	0.00%	1.54%	0.83%	2.77%	6.47%	4.16%	0.00%	5.24%	2.88%
Pool length (ft)				straigh	tening	activties			===			===			===	5	17	10
Pool spacing (ft)							25	69	37.2	14	39.6	32.4	23	62	31	23	62	31
Substrate																		
d50 (mm)						===			===			===			===			===
d84 (mm)						===			===			===			===			===
Additional Reach Parameters																		
Valley Length (ft)						===			===			===			===			===
Channel Length (ft)						===			===			===			===			===
Sinuosity						1.02			1.2			1.22			1.1			1.1
Water Surface Slope (ft/ft)						1.37% -			2.58%			0.50%			1.27% -			3.01%
						3.61%									3.35%			
BF slope (ft/ft)						===			===			===			===			===
Rosgen Classification						Cg			Е			Е			E/C			E/C
Note: U1 2 is characterized by a sp	rina/se	en wit	h a ve	rv smal	Lwater		he chai	nnel wa		ucted w	th a sm	aller Ba	nktull (ross Se		area to	account	for the

Note: U1 2 is characterized by a spring/seep, with a very small watershed. The channel was constructed with a smaller Bankfull Cross Sectional area to account for the smaller stormwater pulses and controlled discharge. In addition, the lower reaches of the channel are low slope wetlands that elevate the width-to-depth ratio in post construction measurements.

Table 10C. Baseline Morphology and Hydraulic Summary Aycock Springs UT 3

Parameter	USGS Gage Data	Pre-Existing Condition			Project Reference Cedarock Park			Project Reference Cripple Creek			Design			As-built		
Dimension	Min Max Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
BF Width (ft)		4.1	5	4.5	8	12.1	8.1	3	6.1	4.6	7.2	8.3	7.8	4.7	7	5.9
Floodprone Width (ft)	unavailable for this	7	18	12	15	25	18	150	150	150	20	70	50	10	20	20
BF Cross Sectional Area (ft2)	project			2.2			8			5.9			4.3	1.2	2.7	2.1
BF Mean Depth (ft)		0.4	0.5	0.5	0.8	1	0.8	0.7	1.5	1.1	0.5	0.7	0.6	0.2	0.4	0.4
BF Max Depth (ft)		0.8	1.1	1	1.1	1.4	1.4	1	2.3	1.7	0.7	0.9	0.8	0.5	0.6	0.6
Width/Depth Ratio		8.2	12.5	9.9	8	15.1	10.1	4	4.3	4.2	12	16	14	12	26	20
Entrenchment Ratio		1.7	3.6	2.5	1.9	2.2	2.1	24.6	50	37.3	2.6	9	6.4	2	4	3.3
Bank Height Ratio		1	3	2	1	1.8	1	1	1.5	1.3	1	1.2	1			1
Wetted Perimeter(ft)				===			===			===			===			===
Hydraulic radius (ft)				===			===			===			===			===
Pattern																
Channel Beltwidth (ft)			attern o		20	38	22.8	15.1	29.2	24.3	23	47	31	23	47	31
Radius of Curvature (ft)			pools o		11	27	16.5	8.9	19.4	13.2	14	31	23	14	31	23
Meander Wavelength (ft)		straigh	ntening	activties	44	116	68.4	31	74	47.8	47	94	66	47	94	66
Meander Width ratio					2.4	4.7	2.8	2.1	4	3.4	3	6	4	3	6	4
Profile																
Riffle length (ft)			attern o				===			===			===	8	24	14
Riffle slope (ft/ft)			pools o		1.00%	5.76%	3.16%	0.00%	1.54%	0.83%	2.77%	6.47%	4.16%	0.52%	2.54%	1.71%
Pool length (ft)		straigh	ntening	activties			===			===			===	6	10	8
Pool spacing (ft)					25	69	37.2	14	39.6	32.4	23	62	31	23	62	31
Substrate					_											
d50 (mm)				===			===			===			===			===
d84 (mm)				===			===			===			===			===
Additional Reach Parameters																
Valley Length (ft)				===			===			===			===			===
Channel Length (ft)				===			===			===			===			===
Sinuosity]			1.01			1.2			1.22			1.1			1.1
Water Surface Slope (ft/ft)				1.53%			2.58%			0.50%			1.27% - 3.35%			0.92%
BF slope (ft/ft)				===			===			===			===			===
Rosgen Classification	1			Eg			E			E			E/C			E/C
Note: IIT 2 is sharestorized by a pr		Щ,	Ļ—		Щ,	o oonetr		.,,			roon So	بسبا	oroo the	L	Ļ.,	

Note: UT 3 is characterized by a pond in the headwaters; therefore, the channel was constructed with a smaller Bankfull Cross Sectional area than other tributaries associated with the project.

Table 10D. Baseline Morphology and Hydraulic Summary Aycock Springs UT 4

Parameter	USGS Gage Data		Pre-Existing Condition			Project Reference Cedarock Park			Project Reference Cripple Creek			Design			As-built			
Dimension	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
BF Width (ft)				4.8	11.7	8.3	8	12.1	8.1	3	6.1	4.6	8.7	10	9.4	8	10.9	8.5
Floodprone Width (ft)	unavail			8	70	39	15	25	18	150	150	150	70	200	150			50
BF Cross Sectional Area (ft2)	р	roject				6.3			8			5.9			6.3	3.5	5.6	4.3
BF Mean Depth (ft)				0.5	1.3	8.0	8.0	1	8.0	0.7	1.5	1.1	0.6	8.0	0.7	0.4	0.6	0.5
BF Max Depth (ft)				0.9	2	1.5	1.1	1.4	1.4	1	2.3	1.7	8.0	1.1	1	0.6	0.9	0.8
Width/Depth Ratio				3.7	23.4	12.4	8	15.1	10.1	4	4.3	4.2	12	16	14	16	22	19
Entrenchment Ratio				1.2	11.5	4.9	1.9	2.2	2.1	24.6	50	37.3	7.5	21.3	16	5	6	6
Bank Height Ratio				1.2	2.4	1.8	1	1.8	1	1	1.5	1.3	1	1.2	1			1
Wetted Perimeter(ft)						===			===			===			===			===
Hydraulic radius (ft)						===			===			===			===			===
Pattern																		
Channel Beltwidth (ft)					attern of		20	38	22.8	15.1	29.2	24.3	28	56	38	28	56	38
Radius of Curvature (ft)					pools d		11	27	16.5	8.9	19.4	13.2	17	38	28	17	38	28
Meander Wavelength (ft)				straigr	ntening a	activties	44	116	68.4	31	74	47.8	56	113	80	56	113	80
Meander Width ratio							2.4	4.7	2.8	2.1	4	3.4	3	6	4	3	6	4
Profile																		
Riffle length (ft)					attern of				===			===			===	12	35	16
Riffle slope (ft/ft)					pools d		1.00%	5.76%	3.16%	0.00%	1.54%	0.83%	1.12%	2.60%	1.67%	0.61%	2.42%	1.28%
Pool length (ft)				straigr	ntening a	activties			===			===			===	14	42	22
Pool spacing (ft)							25	69	37.2	14	39.6	32.4	28	75	38	28	75	38
Substrate																		
d50 (mm)						===			===			===			===			===
d84 (mm)						===			===			===			===			===
Additional Reach Parameters																		
Valley Length (ft)						===			===			===			===			===
Channel Length (ft)						===			===			===			===			===
Sinuosity						1.1			1.2			1.22			1.1			1.1
Water Surface Slope (ft/ft)						0.93%			2.58%			0.50%			0.93%			0.66%
BF slope (ft/ft)						===			===			===			===			===
Rosgen Classification						Eg			Е			E			E/C			E/C

Table 10E. Baseline Morphology and Hydraulic Summary Aycock Springs Travis Creek

Parameter	USG	S Gage Data		re-Exist Conditio	_		ect Refe larock P			ect Refe			Design	1		As-bu	ilt
Dimension	Min	Max Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
BF Width (ft)	USGS	S gage data is	30	51.7	41.4	8	12.1	8.1	3	6.1	4.6	25.7	29.6	27.7	25.2	30.3	26.7
Floodprone Width (ft)	unava	ilable for this	68	160	122	15	25	18	150	150	150	200	300	250			150
BF Cross Sectional Area (ft2)		project			54.9			8			5.9			54.9	41.3	73.9	51.2
BF Mean Depth (ft)			1.1	1.8	1.4	8.0	1	0.8	0.7	1.5	1.1	1.9	2.1	2	1.6	2.4	2
BF Max Depth (ft)			3.3	4.1	3.7	1.1	1.4	1.4	1	2.3	1.7	2.7	3	2.8	2.3	3.4	2.8
Width/Depth Ratio			16.7	47	32.1	8	15.1	10.1	4	4.3	4.2	12	16	14	12	16	13
Entrenchment Ratio			1.6	5.3	3.2	1.9	2.2	2.1	24.6	50	37.3	7.2	10.8	9	5	6	5.6
Bank Height Ratio			1	1.1	1	1	1.8	1	1	1.5	1.3	1	1.2	1			1
Wetted Perimeter(ft)					===			===			===			===			===
Hydraulic radius (ft)					===			===			===			===			===
Pattern																	
Channel Beltwidth (ft)				attern of		20	38	22.8	15.1	29.2	24.3	83	166	111	83	166	111
Radius of Curvature (ft)				pools d		11	27	16.5	8.9	19.4	13.2	55	111	83	55	111	83
Meander Wavelength (ft)			straigh	ntening a	activties	44	116	68.4	31	74	47.8	166	332	236	166	332	236
Meander Width ratio						2.4	4.7	2.8	2.1	4	3.4	3	6	4	3	6	4
Profile																	
Riffle length (ft)				attern of				===			===			===	16	87	54
Riffle slope (ft/ft)				pools d		1.00%	5.76%	3.16%	0.00%	1.54%	0.83%	0.28%	0.64%	0.41%	0.00%	0.70%	0.19%
Pool length (ft)			straigh	ntening a	activties			===			===			===	27	70	43
Pool spacing (ft)						25	69	37.2	14	39.6	32.4	83	222	111	83	222	111
Substrate																	
d50 (mm)					===			===			===			===			===
d84 (mm)					===			===			===			===			===
Additional Reach Parameters																	
Valley Length (ft)					===			===			===			===			===
Channel Length (ft)					===			===			===			===			===
Sinuosity					1.05			1.2			1.22			1.05			1.05
Water Surface Slope (ft/ft)					NA			2.58%			0.50%			0.23%			0.10%
BF slope (ft/ft)					===			===			===			===			===
Rosgen Classification					Fc			Е			E			E/C			E/C

Table 11A. Morphology and Hydraulic Monitoring Summary Aycock Travis Creek (Downstream) - Stream and Wetland Restoration Site

Parameter		XS 1 R	iffle (Tra	vis Do	own)			XS 2 I	Riffle (Travis	s Dow	vn)		XS 3	Pool (Γravis	Down)		XS 4	Riffl	le (Tra	avis Dow	n)		XS 5	Pool (Travis	Down	1)		XS 6 R	liffle (Travis	Down)
Dimension	MY 0	MY1	MY2	MY3	MY4	MY5	MY (MY1	MY2	MY3	в му	4 MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY	0 MY	1 M	Y2 M	IY3 MY	4 MY5	MY (MY1	MY2	MY.	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY:
BF Width (ft)	26	26.7					25.2	26.2					33.7	33.2					25.5	27			1		26	26.7					27.3	27.7				
Floodprone Width (ft)	150	150					150	150											150	150											150	150				
BF Cross Sectional Area (ft2)	41.3	40					47.5	47.4					58.7	55.8					47.2	44.6	5				61.4	58.1					54.9	50.6				
BF Mean Depth (ft)	1.6	1.5					1.9	1.8					1.7	1.7					1.9	1.7					2.4	2.2					2.0	1.8				
BF Max Depth (ft)	2.3	2.3					2.5	2.5					3.7	3.5					2.5	2.6					4	3.7					3	2.9				
Width/Depth Ratio	16.4	17.8					13.4	14.5											13.8	16.3	3										13.6	15.2				
Entrenchment Ratio	5.8	5.6					6.0	5.7											5.9	5.6											5.5	5.4				
Bank Height Ratio	1.0	1.0					1.0	1.0											1.0	1.0											1.0	1.0				
Wetted Perimeter (ft)	27.1	27.4					26.4	27.5					34.8	34.4					26.6	28					27.6	28.2					28.7	29.1				
Hydraulic Radius (ft)	1.5	1.5					1.8	1.7					1.7	1.6					1.8	1.6					2.2	2.1					1.9	1.7				
Substrate																																				
d50 (mm)																																				
d84 (mm)																																				

Parameter		XS 7 P	ool (Trav	vis Dov	wn)		2	KS 8 I	Riffle (Travis	Down	1)		XS 9 1	Pool (T	ravis	Down))		XS 10	Pool (Travis	Down	1)	X	KS 11	Riffle (Travis	s Down	1)
Dimension	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5
BF Width (ft)	25.9	27.7					28.1	28.5					29.3	29.1					38.6	38.6					30.3	29.8				
Floodprone Width (ft)							150	150																	150	150				
BF Cross Sectional Area (ft2)	60	45.8					64.6	57.4					65.9	63.1					100	91					73.9	66.6				
BF Mean Depth (ft)	2.3	1.7					2.3	2.0					2.2	2.2					2.6	2.4					2.4	2.2				
BF Max Depth (ft)	3.9	2.8					3.3	3.1					3.7	3.4					4.3	4.2					3.4	3.6				
Width/Depth Ratio							12.2	14.2																	12.4	13.3				
Entrenchment Ratio							5.3	5.3																	5.0	5.0				
Bank Height Ratio							1	1																	1	1				
Wetted Perimeter (ft)	27.5	29.1					29.5	29.7					30.6	30.3					40.2	40					31.8	31.4				
Hydraulic Radius (ft)	2.2	1.6					2.2	1.9					2.2	2.1					2.5	2.3					2.3	2.1				1
Substrate																														
d50 (mm)																														
d84 (mm)																														

Table 11B. Morphology and Hydraulic Monitoring Summary Aycock Travis Creek (Upstream) - Stream and Wetland Restoration Site

Parameter		XS 12	Riffle (T	ravis U	J p)			XS 1.	3 Pool	(Trav	is Up)			XS 14	Riffle	(Trav	is Up)	
Dimension	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5
BF Width (ft)	29	29.6					26.9	26.9					32.8	32.3				
Floodprone Width (ft)													150	150				
BF Cross Sectional Area (ft2)	68.7	66.4					64.0	50.3					104.5	92.4				
BF Mean Depth (ft)	2.4	2.2					2.4	1.9					3.2	2.9				
BF Max Depth (ft)	3.4	3.5					3.9	3.3					4.8	4.1				
Width/Depth Ratio													10.3	11.3				
Entrenchment Ratio													4.6	4.6				
Bank Height Ratio													1.0	1.0				
Wetted Perimeter (ft)	30.4	30.8					28.8	28.1					35.0	34.2				
Hydraulic Radius (ft)	2.3	2.2					2.2	1.8					3.0	2.7				
Substrate																		
d50 (mm)																		
d84 (mm)			·															

Table 11C. Morphology and Hydraulic Monitoring Summary Aycock UT-1 - Stream and Wetland Restoration Site

Parameter		XS	1 Riffle	(UT 1))			XS	2 Rif	fle (U	Γ1)			X	S 3 Poo	ol (UT	1)			XS	4 Riff	le (U'	Γ1)			XS	5 5 Rif	fle (U'	Γ1)	
Dimension	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5
BF Width (ft)	9.3	9.2					8.8	9.3					8.4	8.4					9.3	9.7					9.6	9.5				
Floodprone Width (ft)	90	90					90	90											90	90					90	90				
BF Cross Sectional Area (ft2)	5.6	4.7					4.6	3.7					6.7	5.6					6.2	5.5					6.6	5.9				
BF Mean Depth (ft)	0.6	0.5					0.5	0.4					0.8	0.7					0.7	0.6					0.7	0.6				
BF Max Depth (ft)	1.1	0.8					0.7	0.6					1.3	1.2					1	0.9					1.1	1.1				
Width/Depth Ratio	15.4	18.0					16.8	23.4											14.0	17.1					14.0	15.3				
Entrenchment Ratio	9.7	9.8					10.2	9.7											9.7	9.3					9.4	9.5				
Bank Height Ratio	1.0	1.0					1.0	1.0											1.0	1.0					1.0	1.0				
Wetted Perimeter (ft)	9.7	9.4					9	9.4					8.9	8.9					9.7	10					10	10				
Hydraulic Radius (ft)	0.6	0.5					0.5	0.4					0.7	0.6					0.6	0.5					0.7	0.6				
Substrate																														
d50 (mm)																														
d84 (mm)																														

Parameter		XS	6 Riffle	(UT 1))			XS	7 Rif	fle (U	Γ1)			X	S 8 Po	ol (UT	1)			XS	9 Rif	le (UI	Γ1)			XS	10 Pc	ool (UT	Γ1)	
Dimension	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5
BF Width (ft)	6.9	7.5					7.5	7.2					7.8	8.7					7.9	7.2					7.6	7				
Floodprone Width (ft)	90	90					90	90											90	90										
BF Cross Sectional Area (ft2)	3.6	1.9					3.9	2.4					5.7	4.1					3	4.1					4.7	5.6				
BF Mean Depth (ft)	0.5	0.3					0.5	0.3					0.7	0.5					0.4	0.6					0.6	0.8				
BF Max Depth (ft)	0.7	0.4					0.7	0.6					1.2	1					0.7	1.1					1.1	1.3				
Width/Depth Ratio	13.2	29.6					14.4	21.6											20.8	12.6										
Entrenchment Ratio	13.0	12.0					12.0	12.5											11.4	12.5										
Bank Height Ratio	1.0	1.0					1.0	1.0											1.0	1.0										
Wetted Perimeter (ft)	7.2	7.6					7.8	7.3					8.3	9.1					8	7.8					8	7.7				
Hydraulic Radius (ft)	0.5	0.2					0.5	0.3					0.7	0.4					0.4	0.5					0.6	0.7				
Substrate																														
d50 (mm)																														
d84 (mm)																						·								

Parameter		XS 1	11 Riffle	(UT 1	.)			XS	12 Ri	ffle (U	T 1)			XS	13 Po	ool (U	Γ1)			XS	14 Rif	fle (U	T 1)			XS	15 Rif	ffle (U'	Γ1)	
Dimension	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5
BF Width (ft)	7.4	7					8	7.4					8.6	8					6.4	6.3					7.1	7.2				
Floodprone Width (ft)	90	90					90	90											90	90					90	90				
BF Cross Sectional Area (ft2)	3.5	3.5					3.7	2.8					6.5	4.3					3.1	2.8					4	3.3				
BF Mean Depth (ft)	0.5	0.5					0.5	0.4					0.8	0.5					0.5	0.4					0.6	0.5				
BF Max Depth (ft)	0.8	0.8					0.7	0.6					1.2	1.2					0.7	0.6					0.9	0.8				
Width/Depth Ratio	15.6	14.0					17.3	19.6											13.2	14.2					12.6	15.7				
Entrenchment Ratio	12.2	12.9					11.3	12.2											14.1	14.3					12.7	12.5				
Bank Height Ratio	1.0	1.0					1.0	1.0											1.0	1.0					1.0	1.0				
Wetted Perimeter (ft)	7.8	7.3					8.5	7.6					9.2	8.5					6.8	6.5					7.4	7.6				
Hydraulic Radius (ft)	0.4	0.5					0.4	0.4					0.7	0.5					0.5	0.4					0.5	0.4				
Substrate																														
d50 (mm)																														
d84 (mm)																														

Table 11C continued. Morphology and Hydraulic Monitoring Summary

Aycock UT-1 - Stream and Wetland Restoration Site

Parameter		XS	16 Riff	le (UT	1)			XS	17 Rif	ffle (U	T 1)			XS	18 Rif	ffle (U	T 1)			XS	19 Po	ool (U'	Γ1)			XS	20 Rif	fle (U	T 1)	
Dimension	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5
BF Width (ft)	9	8.3					8.5	8.1					7.1	7.2					7.6	7.7					9.1	8.5				
Floodprone Width (ft)	90	90					90	90					90	90											90	90				
BF Cross Sectional Area (ft2)	4.6	2.6					3.9	3.6					3.5	3.4					6.5	5.4					5.3	4.4				
BF Mean Depth (ft)	0.5	0.3					0.5	0.4					0.5	0.5					0.9	0.7					0.6	0.5				
BF Max Depth (ft)	0.8	0.5					0.7	0.7					0.6	0.7					1.3	1					0.9	0.7				
Width/Depth Ratio	17.6	26.5					18.5	18.2					14.4	15.2											15.6	16.4				
Entrenchment Ratio	10.0	10.8					10.6	11.1					12.7	12.5											9.9	10.6				
Bank Height Ratio	1.0	1.0					1.0	1.0					1.0	1.0											1.0	1.0				
Wetted Perimeter (ft)	9.3	8.4					8.7	8.3					7.4	7.4					8.2	8.3					9.4	8.7				
Hydraulic Radius (ft)	0.5	0.3					0.5	0.4					0.5	0.5					0.8	0.6					0.6	0.5				
Substrate																														
d50 (mm)																														
d84 (mm)																														

Parameter		XS	21 Poo	l (UT	1)			XS	22 Ri	ffle (U	T 1)			XS	23 Rif	ffle (U	T 1)			XS	24 Rif	ffle (U	T 1)	
Dimension	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5
BF Width (ft)	8.3	8.2					7.2	7.5					7.6	6.8					8	7.7				
Floodprone Width (ft)							90	90					90	90					90	90				
BF Cross Sectional Area (ft2)	9.3	5.9					3.6	3.4					3.2	3.2					4	3.2				
BF Mean Depth (ft)	1.1	0.7					0.5	0.5					0.4	0.5					0.5	0.4				
BF Max Depth (ft)	2.1	1.4					0.7	0.7					0.6	0.6					0.7	0.7				
Width/Depth Ratio							14.4	16.5					18.1	14.5					16.0	18.5				
Entrenchment Ratio							12.5	12.0					11.8	13.2					11.3	11.7				
Bank Height Ratio							1.0	1.0					1.0	1.0					1.0	1.0				
Wetted Perimeter (ft)	9.5	9.2					7.5	7.8					9.3	7.0					9.3	7.8				
Hydraulic Radius (ft)	1	0.6					0.5	0.4					0.5	0.5					0.5	0.4				
Substrate		·					·																	
d50 (mm)																								
d84 (mm)																								

Table 11D. Morphology and Hydraulic Monitoring Summary Aycock UT-2 - Stream and Wetland Restoration Site

Parameter		X	S 1 Pool	(UT	2)			XS	S 2 Ri	fle (U	Γ2)			XS	3 Riff	fle (U'	T 2)			X	S 4 Riffle (UT 2)			X	S 5 Ri	iffle (U	JT 2)			X	S 6 R	iffle (UT 2)				XS '	7 Pool	l (UT	2)	
Dimension	MY 0	MY1	MY2	MY3	3 MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2 M	Y3 MY4	4 MY5	MY 0	MY1	MY	2 MY	3 MY	4 MY	5 MY (0 MY	1 MY	72 MY	73 MY	Y4 N	IY5 M	7 0 M	IY1 N	MY2	MY3	MY4	MY5
BF Width (ft)	6.5	6.3					4.8	5.6					5.7	5.3					6.4	5.7				8.4	7.7					6.9	7					8.	3 9	9.4				П
Floodprone Width (ft)							90	90					90	90					90	90				90	90					90	90						-					
BF Cross Sectional Area (ft2)	3.8	2.1					1	1.1					1.7	1.4					1	0.9				3.1	2.8					2.3	1.4					5.	1 4	1.1				
BF Mean Depth (ft)	0.6	0.3					0.2	0.2					0.3	0.3					0.2	0.2				0.4	0.4					0.3	0.2					0.	6 ().4				
BF Max Depth (ft)	1	0.6					0.3	0.3					0.5	0.5					0.4	0.3				0.7	0.6					0.6	0.3					1.	1 ().8				
Width/Depth Ratio							23.0	28.5					19.1	20.1					41.0	36.1				22.8	21.2					20.7	35.0)					-					
Entrenchment Ratio							18.8	16.1					15.8	17.0					14.1	15.8				10.7	11.7					13.0	12.9)									,	\Box
Bank Height Ratio							1.0	1.0					1.0	1.0					1.0	1.0				1.0	1.0					1.0	1.0						- -					
Wetted Perimeter (ft)	6.9	6.5					4.9	5.7					5.8	5.4					6.5	5.7				8.6	7.9					7.0	7.0					8.	8 9	9.5				
Hydraulic Radius (ft)	0.6	0.3					0.2	0.2					0.3	0.3					0.2	0.2				0.4	0.4					0.3	0.2					0.	6 ().4				
Substrate																																									,	
d50 (mm)					·																																					
d84 (mm)																																										

Parameter		XS	8 Riffl	e (UT	2)			XS	9 Rif	fle (U	Γ2)			X	S 10 1	Pool (U'	Γ2)			XS	5 11 P	ool (U	T 2)			XS	12 Rif	fle (U	T 2)			XS	13 Rif	fle (UI	Γ 2)	
Dimension	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY (MY1	MY	72 MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5
BF Width (ft)	8.6	8.3					7.4	7.9					7.5	7.8					6.2	6.4					8.3	9.2					7.2	7.6				
Floodprone Width (ft)	90	90					90	90																	90	90					90	90				
BF Cross Sectional Area (ft2)	3.6	3.1					4.2	3.8					5.2	4					3.5	2.7					3.2	2.3					2.1	1.7				
BF Mean Depth (ft)	0.4	0.4					0.6	0.5					0.7	0.5					0.6	0.4					0.4	0.3					0.3	0.2				
BF Max Depth (ft)	0.6	0.5					0.8	0.7					1.3	0.9					0.8	0.7					0.7	0.5					0.4	0.3				1
Width/Depth Ratio	20.5	22.2					13.0	16.4																	21.5	36.8					24.7	34.0				1
Entrenchment Ratio	10.5	10.8					12.2	11.4																	10.8	9.8					12.5	11.8				
Bank Height Ratio	1.0	1.0					1.0	1.0																	1.0	1.0					1.0	1.0				
Wetted Perimeter (ft)	8.8	8.5					7.7	8.1					8.1	8.2					6.6	6.6					8.6	9.3					7.3	7.7				
Hydraulic Radius (ft)	0.4	0.4					0.5	0.5					0.7	0.5					0.5	0.4					0.4	0.3					0.3	0.2		\Box	\Box	
Substrate																																				
d50 (mm)																																				
d84 (mm)																																				

Table 11E. Morphology and Hydraulic Monitoring Summary Avcock UT-3 - Stream and Wetland Restoration Site

Parameter		XS	1 Riffle			XS	2 Riff	le (U'	Γ3)			X	S 3 Poo	ol (UT	Γ 3)			XS	4 Riff	le (U	T 3)			XS	5 Riff	le (U'	Γ3)			
Dimension	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY
BF Width (ft)	6.5	6.9					4.7	5.2					5	5.4					7	6.8					5.3	5.6				
Floodprone Width (ft)	10	11					20	8											20	20					20	20				
BF Cross Sectional Area (ft2)	2.7	2.3					1.9	1.6					3.6	3.2					2.2	1.9					1.2	1.1				
BF Mean Depth (ft)	0.4	0.3					0.4	0.3					0.7	0.6					0.3	0.3					0.2	0.2				
BF Max Depth (ft)	0.6	0.6					0.6	0.5					1	0.9					0.5	0.4					0.5	0.4				
Width/Depth Ratio	15.6	20.7					11.6	16.9											22.3	24.3					23.4	28.5				
Entrenchment Ratio	1.5	1.6					4.3	1.5											2.9	2.9					3.8	3.6				
Bank Height Ratio	1.0	1.0					1.0	1.0											1.0	1.0					1.0	1.0				
Wetted Perimeter (ft)	6.8	7.1					5.0	5.3					5.7	5.8					7.1	6.9					5.7	5.8				
Hydraulic Radius (ft)	0.4	0.3					0.4	0.3					0.6	0.6					0.3	0.3					0.2	0.2				
Substrate																														
d50 (mm)										Ť																			·	
104 ($\overline{}$

Table 11F. Morphology and Hydraulic Monitoring Summary Aycock UT-4 - Stream and Wetland Restoration Site

Parameter	XS 1 Riffle (UT 4)				XS 2 Pool (UT 4)				XS 3 Riffle (UT 4)				XS 4 Pool (UT 4)					XS 5 Riffle (UT 4)												
Dimension	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY:
BF Width (ft)	8.3	9.4					8.5	9.1					8.6	8.7					8.5	10.6					8	8.3				
Floodprone Width (ft)	50	50											50	50											50	50				
BF Cross Sectional Area (ft2)	3.7	3.3					6.4	5.4					4.3	3.4					6.2	5.2					4.3	4.1				
BF Mean Depth (ft)	0.4	0.4					0.8	0.6					0.5	0.4					0.7	0.5					0.5	0.5				
BF Max Depth (ft)	0.6	0.5					1.5	1					0.8	0.5					1.2	1					0.7	0.7				
Width/Depth Ratio	18.6	26.8											17.2	22.3											14.9	16.8				
Entrenchment Ratio	6.0	5.3											5.8	5.7											6.3	6.0				
Bank Height Ratio	1.0	1.0											1.0	1.0											1.0	1.0				
Wetted Perimeter (ft)	8.6	9.5					9.2	9.5					9.0	8.8					9.1	10.9					8.3	8.5				
Hydraulic Radius (ft)	0.4	0.3					0.7	0.6					0.5	0.4					0.7	0.5					0.5	0.5				
Substrate																														
d50 (mm)																														
d84 (mm)																														

Parameter		XS	6 Riffle	(UT	4)		XS 7 Riffle (UT 4) XS 8 Riffle (UT								Γ 4)			
Dimension	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5
BF Width (ft)	8.1	8.9					9.9	11.7					10.9	11.1				
Floodprone Width (ft)	50	50					50	50					50	50				
BF Cross Sectional Area (ft2)	3.5	3.3					5.6	4.9					5.6	4.9				
BF Mean Depth (ft)	0.4	0.4					0.6	0.4					0.5	0.4				
BF Max Depth (ft)	0.6	0.5					0.9	0.6					0.8	0.7				
Width/Depth Ratio	18.7	24.0					17.5	27.9					21.2	25.1				
Entrenchment Ratio	6.2	5.6					5.1	4.3					4.6	4.5				
Bank Height Ratio	1.0	1.0					1.0	1.0					1.0	1.0				
Wetted Perimeter (ft)	8.4	9.0					10.2	11.9					11.1	11.3				
Hydraulic Radius (ft)	0.4	0.4					0.6	0.4					0.5	0.4				
Substrate																		
d50 (mm)																		
d84 (mm)			·															

APPENDIX E HYDROLOGY DATA

Table 12. UT3 Channel Evidence

Stream Gauge Graphs

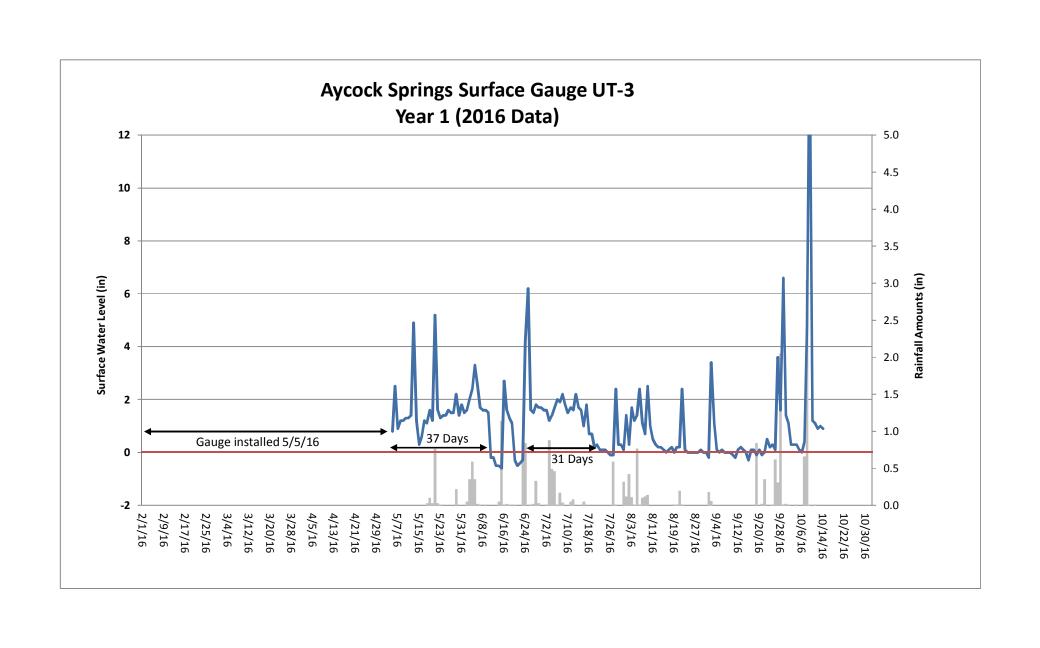
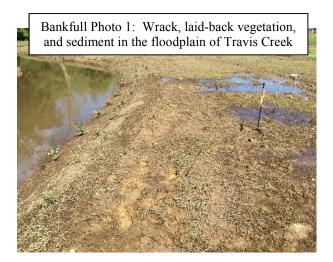
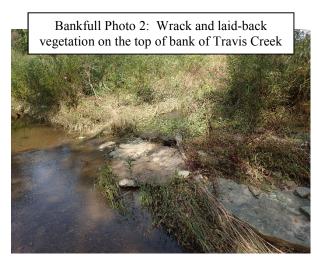
Table 13. Verification of Bankfull Events

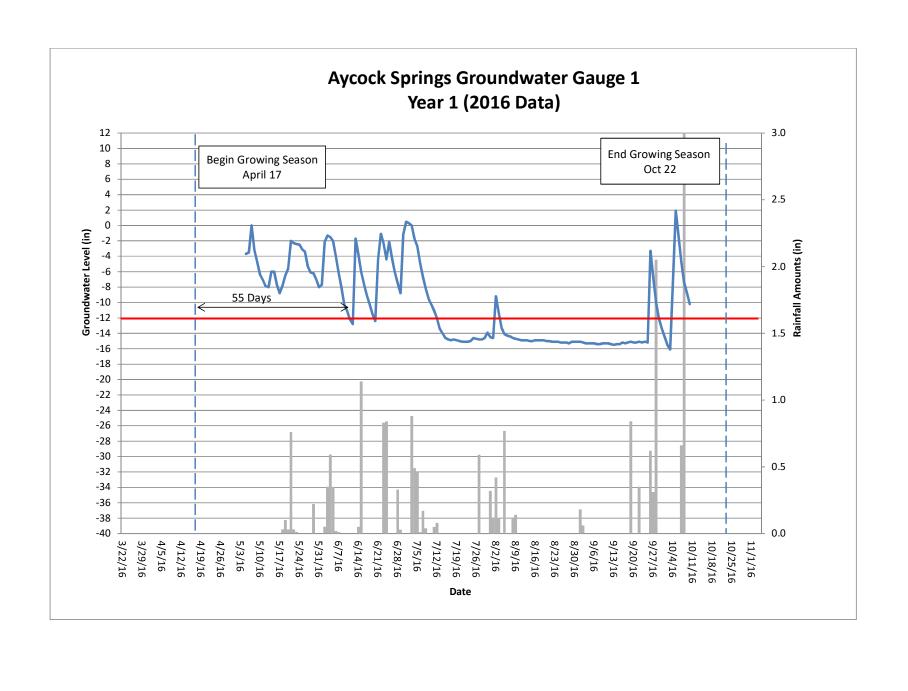
Groundwater Gauge Graphs

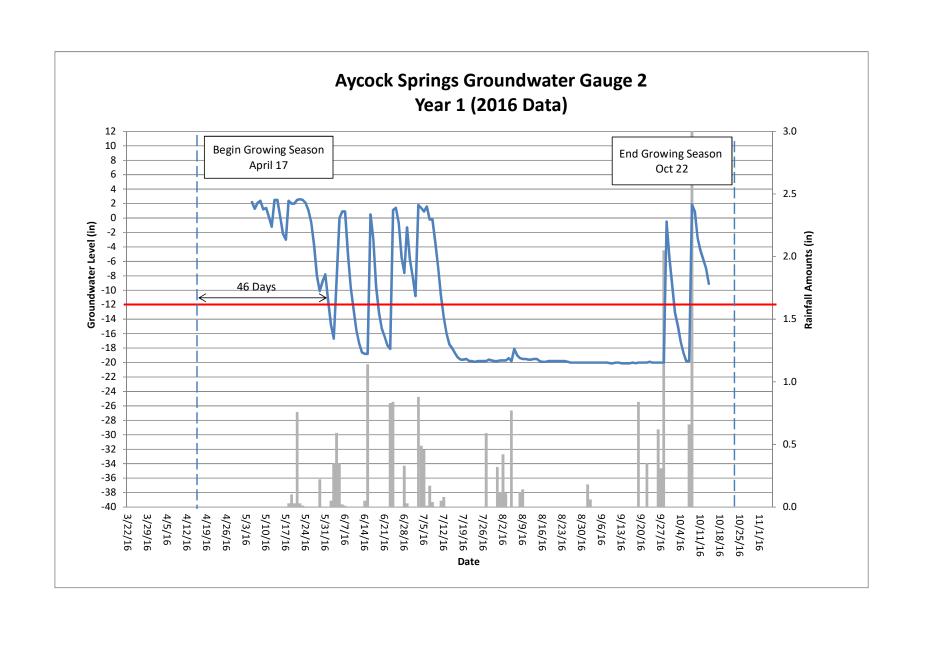
Table 14. Groundwater Hydrology Data

Table 12. UT3 Channel Evidence

UT3 Channel Evidence	Year 1 (2016)
Max consecutive days channel flow	37
Presence of litter and debris (wracking)	Yes
Leaf litter disturbed or washed away	Yes
Matted, bent, or absence of vegetation (herbaceous or otherwise)	Yes
Sediment deposition and/or scour indicating sediment transport	Yes
Water staining due to continual presence of water	Yes
Formation of channel bed and banks	Yes
Sediment sorting within the primary path of flow	Yes
Sediment shelving or a natural line impressed on the banks	Yes
Change in plant community (absence or destruction of terrestrial vegetation and/or transition to species adapted for flow or inundation for a long duration, including hydrophytes)	Yes
Development of channel pattern (meander bends and/or channel braiding) at natural topographic breaks, woody debris piles, or plant root systems	Yes
Exposure of woody plant roots within the primary path of flow	No
Other:	


Table 13. Verification of Bankfull Events


Date of Data Collection	Date of Occurrence	ccurrence Method					
May 5, 2016	May 3, 2016	Wrack, laid-back vegetation, sediment, and standing water observed in the floodplain after 1.55 inches of rain documented* on May 3, 2016 at a nearby rain gauge.	1				
October 13, 2016	September 28, 2016	2.05 inches of rain was recorded on September 28, 2016 at an onsite rain gauge.					
October 13, 2016	October 8, 2016	Wrack and laid-back vegetation observed on top of bank after 3.05 inches of rain was recorded on October 8, 2016 at an onsite rain gauge.	2				

^{*}The onsite rain gauge was installed on May 18, 2016, therefore rain data from a nearby Site (Abbey Lamm Stream and Wetland Mitigation Site) was used to confirm this bankfull event.

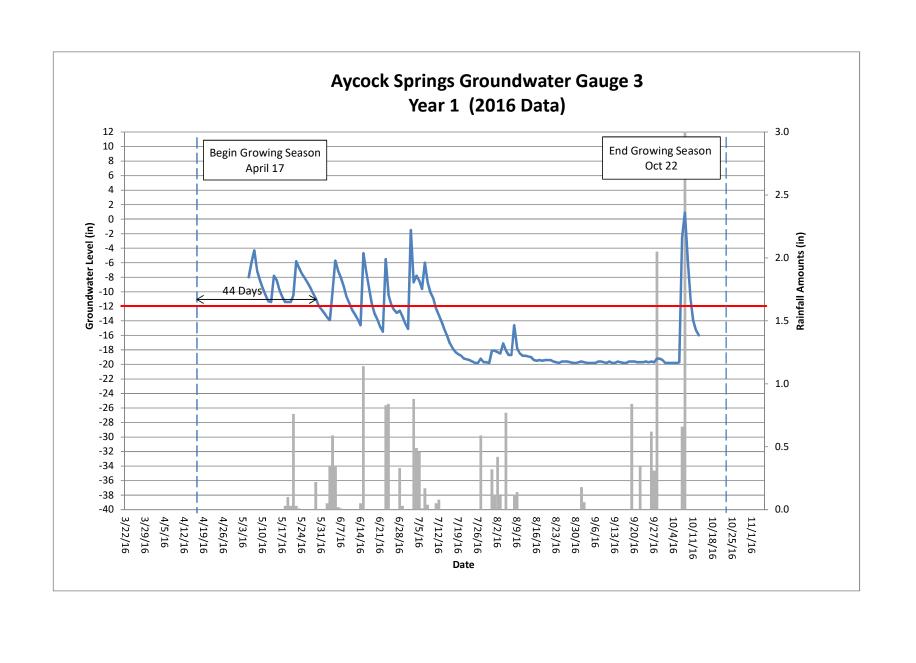


Table 14. Groundwater Hydrology Data

	Success Criteria Achieved/Max Consecutive Days During Growing Season (Percentage)													
Gauge	Year 1 (2016)	Year 2 (2017)	Year 3 (2018)	Year 4 (2019)	Year 5 (2020)	Year 6 (2021)	Year 7 (2022)							
1	Yes/55 days (29.1 percent)													
2	Yes/46 days (24.3 percent)													
3	Yes/44 days (23.3 percent)													

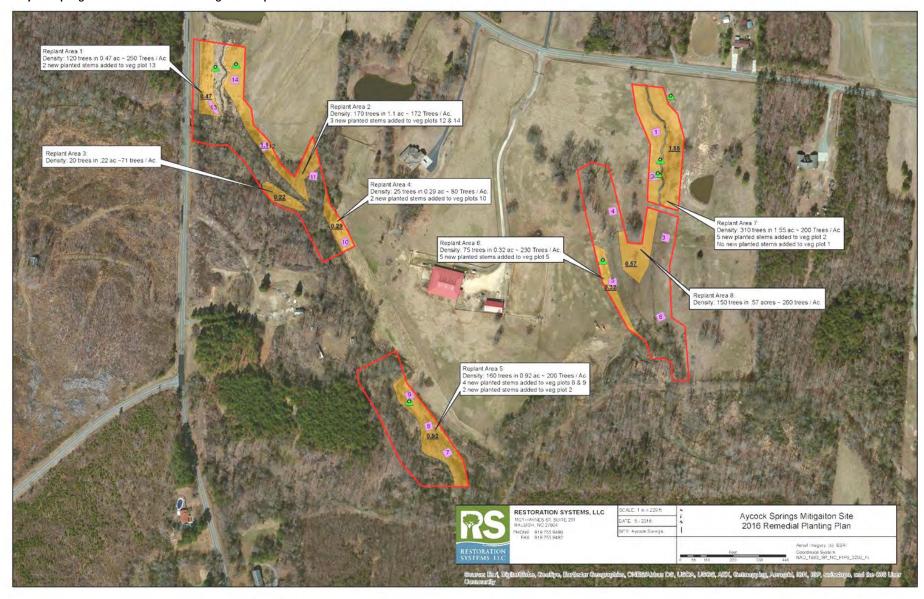
^{*}Due to Site construction activities, groundwater gauges were not installed until May 5, 2016; therefore, the growing season for Year 1 (2016) is based on the soil survey start date of April 17. It is expected that all gauges would meet success criteria at the beginning of the growing season.

REMEDIAL ACTION PLAN 2016-2017

Restoration Systems has implemented the proposed and discussed remedial action plan for Aycock Springs (Section 3.0 Year 1, 2016 Monitoring Report). The following pages include figures and photos indicating where work was performed and at what density / length.

During the week of December 20th, 2016 Carolina Silvics planted 1,030 containerized trees, 755 one gallon and 275 three gallon pots of the following species;

- Quercus phellos- Quercus palustris- Quercus nigra- Betula nigra


- Quercus rubra- Platanus occidentalis- Quercus falcata- Fraxinus pennsylvanica

Density was determined by Yr. 1 monitoring data and infield observations. The goal of the remedial planting was to insuring a density of total planted vegetation (bare root and remedial planting) that would exceed Yr. 2 vegetation success standards, and insure the planted riparian corridor would once again track properly toward becoming a diverse hardwood forest.

Phase two of the remedial action plan was to replenish lost substrate within two riffles along UT-1 (XC 9 and 10). Work was completed on February 23, 2017 with minimal impact to the easement. Class A riprap was used as base and filled in with crush and run stone to meet as-built grades. In all, material was added to approximately 27 linear feet of UT 1 or 0.67% of the project's total linear feet. Continuous observations were made across the entire site during the 2016 growing season and 2016/17 dormant season, no other areas are of concern at this time.

Drone video of the site shot 2-23-2017 can be found online here: https://www.youtube.com/watch?v=ppFLr zOeCo&t=523s

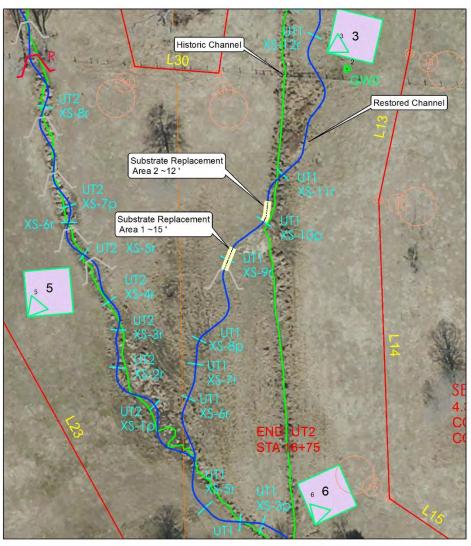
Map of Replant Areas- green dots indicate approximate location of where photos were taken.

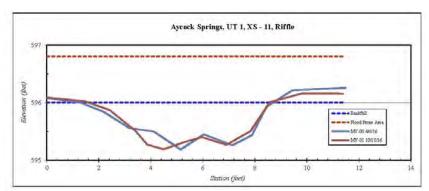
Photo 1: Looking SW. along Replant Area -1

Photo 2: Looking S. in Replant Area 2, just N. of veg. plot 14

Photo 3: Looking SE. in Replant Area 4, near veg. plot 9

Photo 5: Looking S. in Replant Area 5, N. of veg. plot 5


Photo 4: Looking S. in Replant Area 6, from outside of the easement


Photo 6 / 7: Live stake establishment on bank in Replant area 6

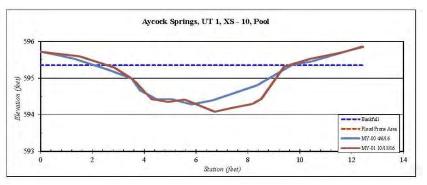


Photo Date: 1-13-2017

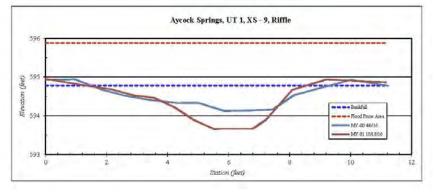


Photo 1: Substrate loss, 6" head-cut at UT 1, XC 9

Photo 2: Pool, upstream of 6" head-cut at UT 1, XC 9 (XC 10 in background)

Photo 3: Substrate replacement at UT 1, XC 9

Photo 3: Substrate loss, upstream riffle of XC 10 (pool)

Photo 4: Substrate replaced, upstream riffle of XC 10 (pool)

Photo 5: post replacement overview

Photo 6: UT-1 looking downstream from XC-11

Photo 7: XC-9 – Post 3-1-2017 0.92 inch rain event (Per USGS Guage at BUFFALO CREEK (SR2819 NR MCLEANSVILLE, NC) ~ 7 miles from Site

Photo 7: XC-10 – Post 3-1-2017 0.92 inch rain event (Per USGS Guage at BUFFALO CREEK (SR2819 NR MCLEANSVILLE, NC) ~ 7 miles from Site